Skip to main content
Log in

Analysis of molecular alterations in laterally spreading tumors of the colorectum

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Colorectal laterally spreading tumors (LSTs) are classified into LST-Gs and LST-NGs, according to macroscopic findings. In the present study, we determined the genetic and epigenetic alterations within colorectal LSTs and protruding adenomas.

Methods

A crypt isolation method was used to isolate DNA from tumors and normal glands of 73 macroscopically verified colorectal LSTs (histologically defined adenomas; 38 LST-Gs and 35 LST-NGs) and 36 protruding adenomas. The DNA was processed using polymerase chain reaction (PCR) microsatellite assays, single-strand conformation polymorphism (SSCP) assays, and pyrosequencing to detect chromosomal allelic imbalance (AI), mutations in APC, KRAS, and TP53, and the methylation of MLH1, MGMT, CDKN2A, HPP1, RASSF2A, SFRP1, DKK1, ZFP64, and SALL4 genes. In addition, methylation status was examined using the following set of markers: MIN1, MINT2, MINT31, MLH1, and CDKN2A (with classification of negative/low and high). Microsatellite instability (MSI) was also examined.

Results

5q AI and methylation of the SFRP1 and SALL4 genes were common molecular events in both LST-Gs and LST-NGs. Neither MSI nor mutations in BRAF ware observed in the LSTs. TP53 mutations were rarely found in LSTs. The frequencies of KRAS and APC mutations and the methylation levels of ZFP64, RASSF2A, and HPP1 genes were significantly higher in LST-Gs than in LST-NGs. Protruding adenomas showed alterations common to LST-Gs. Negative/low methylation status was common among the three types of tumors.

Conclusion

Combined genetic and epigenetic data suggested that the molecular mechanisms of tumorigenesis were different between LST-Gs and LST-NGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kudo S. Endoscopic mucosal resection of flat and depressed types of early colorectal cancer. Endoscopy. 1993;25:455–61.

    Article  CAS  PubMed  Google Scholar 

  2. Uraoka T, Saito Y, Matsuda T, et al. Endoscopic indications for endoscopic mucosal resection of laterally spreading tumours in the colorectum. Gut. 2006;55:1592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tanaka S, Haruma K, Oka S, et al. Clinicopathologic features and endoscopic treatment of superficially spreading colorectal neoplasms larger than 20 mm. Gastrointest Endosc. 2001;54:62–6.

    Article  CAS  PubMed  Google Scholar 

  4. Tamura S, Nakajo K, Yokoyama Y, et al. Evaluation of endoscopic mucosal resection for laterally spreading rectal tumors. Endoscopy. 2004;36:306–12.

    Article  CAS  PubMed  Google Scholar 

  5. Kudo S, Kashida H, Nakajima T, et al. Endoscopic diagnosis and treatment of early colorectal cancer. World J Surg. 1997;21:694–701.

    Article  CAS  PubMed  Google Scholar 

  6. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal tumor development. N Eng J Med. 1988;319:525–32.

    Article  CAS  Google Scholar 

  7. Jass JR, Whitehall VL, Young J, et al. Emerging concepts in colorectal neoplasia. Gastroenterology. 2002;123:862–76.

    Article  CAS  PubMed  Google Scholar 

  8. Hasegawa H, Ueda M, Furukawa K, et al. p53 Gene mutations in early colorectal carcinoma, de novo vs. adenoma-carcinoma sequence. Int J Cancer. 1995;64:47–51.

    Article  CAS  PubMed  Google Scholar 

  9. Fujimori T, Satonaka K, Yamamura-Idei Y, et al. Non-involvement of ras mutations in flat colorectal adenomas and carcinomas. Int J Cancer. 1994;57:51–5.

    Article  CAS  PubMed  Google Scholar 

  10. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–7.

    Article  CAS  PubMed  Google Scholar 

  11. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goel A, Nagasaka T, Arnold CN, et al. The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology. 2007;132:127–38.

    Article  CAS  PubMed  Google Scholar 

  13. Sugai T, Habano W, Jiao Y-F, et al. Analysis of molecular alterations in left- and right-sided colorectal carcinomas reveals distinct pathways of carcinogenesis: proposal for new molecular profile of colorectal carcinomas. J Mol Diagn. 2006;8:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008;10:13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Japanese Society for Cancer of the Colon and Rectum. Japanese Classification of Colorectal Carcinoma, Second English Edition Tokyo: Kanehara Co., 2009; pp. 30–63.

  16. Sugai T, Habano W, Nakamura S, et al. Genetic alterations in DNA diploid, aneuploid and multiploid colorectal carcinomas identified by the crypt isolation technique. Int J Cancer. 2000;88:614–9.

    Article  CAS  PubMed  Google Scholar 

  17. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    CAS  PubMed  Google Scholar 

  18. Suzuki H, Itoh F, Toyota M, et al. Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Int J Cancer. 1999;83:309–13.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto E, Suzuki H, Yamano HO, et al. Molecular dissection of premalignant colorectal lesions reveals early onset of the CpG island methylator phenotype. Am J Pathol. 2012;181:1847–61.

    Article  CAS  PubMed  Google Scholar 

  20. Sugai T, Habano W, Uesugi N, et al. Molecular validation of the modified Vienna classification of colorectal tumors. J Mol Diagn. 2002;4:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaji E, Kato J, Suzuki H, et al. Analysis of K-ras, BRAF, and PIK3CA mutations in laterally-spreading tumors of the colorectum. J Gastroenterol Hepatol. 2011;26:599–607.

    Article  CAS  PubMed  Google Scholar 

  22. Voorham QJ, Rondagh EJ, Knol DL, et al. Tracking the molecular features of nonpolypoid colorectal neoplasms: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108:1042–56.

    Article  CAS  PubMed  Google Scholar 

  23. Umetani N, Sasaki S, Masaki T, et al. Involvement of APC and K-ras mutation in non-polypoid colorectal tumorigenesis. Br J Cancer. 2000;82:9–15.

    Article  CAS  PubMed  Google Scholar 

  24. Hiraoka S, Kato J, Tatsukawa M, et al. Laterally spreading type of colorectal adenoma exhibits a unique methylation phenotype and K-ras mutations. Gastroenterology. 2006;131:379–89.

    Article  CAS  PubMed  Google Scholar 

  25. Noro A, Sugai T, Habano W, et al. Analysis of Ki-ras and p53 gene mutations in laterally spreading tumors of the colorectum. Pathol Int. 2003;53:828–36.

    Article  CAS  PubMed  Google Scholar 

  26. Nosho K, Yamamoto H, Takahashi T, et al. Correlation of laterally spreading type and JC virus with methylator phenotype status in colorectal adenoma. Hum Pathol. 2008;39:767–75.

    Article  CAS  PubMed  Google Scholar 

  27. Spring KJ, Zhao ZZ, Karamatic R, et al. High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology. 2006;131:1400–7.

    Article  CAS  PubMed  Google Scholar 

  28. Caldwell GM, Jones C, Gensberg K, et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 2004;64:883–8.

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Manero G, Daniel J, Smith TL, et al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin Cancer Res. 2002;8:2217–24.

    CAS  PubMed  Google Scholar 

  30. Hesson LB, Wilson R, Morton D, et al. CpG island promoter hypermethylation of a novel Ras-effector gene RASSF2A is an early event in colon carcinogenesis and correlates inversely with K-ras mutations. Oncogene. 2005;24:3987–94.

    Article  CAS  PubMed  Google Scholar 

  31. Aguilera O, Fraga MF, Ballestar E, et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene. 2006;25:4116–21.

    Article  CAS  PubMed  Google Scholar 

  32. Habano W, Sugai T, Jiao Y-F, Nakamura S. A novel approach for detecting global epigenetic alterations associated with tumor cell aneuploidy. Int J Cancer. 2007;121:1487–93.

    Article  CAS  PubMed  Google Scholar 

  33. Young J, Biden KG, Simms LA, et al. HPP1: a transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers. Proc Natl Acad Sci USA. 2001;98:265–70.

    Article  CAS  PubMed  Google Scholar 

  34. Caldwell GM, Jones CE, Taniere P, et al. The Wnt antagonist sFRP1 is downregulated in premalignant large bowel adenomas. Br J Cancer. 2006;94:922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Böhm J, Kaiser FJ, Borozdin W, et al. Synergistic cooperation of Sall4 and Cyclin D1 in transcriptional repression. Biochem Biophys Res Commun. 2007;356:773–9.

    Article  PubMed  Google Scholar 

  36. Chowdhury K, Goulding M, Walther C, et al. The ubiquitous transactivator Zfp-38 is upregulated during spermatogenesis with differential transcription. Mech Dev. 1992;39:129–42.

    Article  CAS  PubMed  Google Scholar 

  37. Sakamoto K, Tamamura Y, Katsube K, et al. Zfp64 participates in Notch signaling and regulates differentiation in mesenchymal cells. J Cell Sci. 2008;121:1613–23.

    Article  CAS  PubMed  Google Scholar 

  38. Wang C, Liu X, Liu Y, Zhang Q, et al. Zinc finger protein 64 promotes Toll-like receptor-triggered proinflammatory and type I interferon production in macrophages by enhancing p65 subunit activation. J Biol Chem. 2013;288:24600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Konda K, Konishi K, Yamochi T, et al. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms. PLoS One. 2014;9:e103822.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yagi K, Takahashi H, Akagi K, et al. Intermediate methylation epigenotype and its correlation to KRAS mutation in conventional colorectal adenoma. Am J Pathol. 2012;180:616–25.

    Article  CAS  PubMed  Google Scholar 

  41. Kaneda A, Yagi K. Two groups of DNA methylation markers to classify colorectal cancer into three epigenotypes. Cancer Sci. 2011;102:18–24.

    Article  CAS  PubMed  Google Scholar 

  42. Sakai E, Ohata K, Chiba H, et al. Methylation epigenotypes and genetic features in colorectal laterally spreading tumors. Int J Cancer. 2014;135:1586–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical assistance of Miss E. Sugawara and Mr. T. Kasai. We also thank members of the Division of Molecular Diagnostic Pathology, Department of Pathology, Iwate Medical University, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Sugai.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Supplementary material 2 (DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugai, T., Habano, W., Takagi, R. et al. Analysis of molecular alterations in laterally spreading tumors of the colorectum. J Gastroenterol 52, 715–723 (2017). https://doi.org/10.1007/s00535-016-1269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1269-y

Keywords

Navigation