Skip to main content
Log in

Aspirin-induced gastrointestinal damage is associated with an inhibition of epithelial cell autophagy

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Aspirin (ASA) causes gastrotoxicity by hampering the epithelial defense against luminal contents through cyclooxygenase inhibition. Since cell survival in tough conditions may depend on rescue mechanisms like autophagy, we analyzed whether epithelial cells rely on this process to defend themselves from aspirin’s damaging action.

Methods

Rats received a single dose of ASA (150 mg/kg, p.o.) with or without pretreatment with the autophagy inhibitor 3-methyladenine, and gastric injury and epithelial autophagy were evaluated 3 h later. The effects of ASA on cell viability and autophagy were also evaluated in gastric epithelial AGS cells.

Results

Basal autophagy in the gastric mucosa was inhibited by ASA as demonstrated by increased levels of p62 and ubiquitinated proteins and total LC3 and a reduced LC3-II/LC3-I ratio. Similarly, ASA increased p62 and decreased LC3-II accumulation and the number of EmGFP/LC3B puncta in AGS cells. ASA activated the PI3K/Akt-GSK3-mTOR pathway, which phosphorylates ULK1 to prevent autophagy initiation, changes that were inhibited by the PI3K-inhibitor wortmannin. Autophagy inhibition seems to enhance the vulnerability of gastric epithelial cells as a combination of ASA with 3-methyladenine exacerbated rat gastric damage and AGS cell apoptosis.

Conclusions

Our data highlight the importance of autophagy in the gastric mucosa as a protective mechanism when the epithelium is injured. In the stomach, aspirin induces mucosal damage and reduces autophagy, thus, eliminating a protective mechanism that epithelial cells could use to escape death. We hypothesize that the combination of aspirin with drugs that activate autophagy could protect against gastric damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyladenine

ASA:

Acetylsalicylic acid, aspirin

CQ:

Chloroquine

NSAIDs:

Non-steroidal anti-inflammatory agents

Veh:

Vehicle

References

  1. Malfertheiner P, Chan FK, McColl KE. Peptic ulcer disease. Lancet. 2009;374:1449–61.

    Article  CAS  PubMed  Google Scholar 

  2. Leung Ki EL, Chan FK. Interaction of Helicobacter pylori infection and low-dose aspirin in the upper gastrointestinal tract: implications for clinical practice. Best Pract Res Clin Gastroenterol. 2012;26:163–72.

    Article  CAS  PubMed  Google Scholar 

  3. Sostres C, Lanas A. Gastrointestinal effects of aspirin. Nat Rev Gastroenterol Hepatol. 2011;8:385–94.

    Article  CAS  PubMed  Google Scholar 

  4. Valkhoff VE, Sturkenboom MC, Kuipers EJ. Risk factors for gastrointestinal bleeding associated with low-dose aspirin. Best Pract Res Clin Gastroenterol. 2012;26:125–40.

    Article  CAS  PubMed  Google Scholar 

  5. Starodub OT, Demitrack ES, Baumgartner HK, et al. Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric epithelium. Am J Physiol Cell Physiol. 2008;294:C223–32.

    Article  CAS  PubMed  Google Scholar 

  6. Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001;15:2057–72.

    Article  CAS  PubMed  Google Scholar 

  7. Jana NR. NSAIDs and apoptosis. Cell Mol Life Sci. 2008;65:1295–301.

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marino G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15:81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    Article  CAS  PubMed  Google Scholar 

  11. Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014;24:24–41.

    Article  CAS  PubMed  Google Scholar 

  12. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126:955–68.

    Article  CAS  PubMed  Google Scholar 

  14. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez C, Santamatilde E, McCreath KJ, et al. Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. Br J Pharmacol. 2009;156:262–72.

    Article  CAS  PubMed  Google Scholar 

  16. Ortiz-Masia D, Cosin-Roger J, Calatayud S, et al. Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunol. 2013;. doi:10.1038/mi.2013.108.

    PubMed  Google Scholar 

  17. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    Article  CAS  PubMed  Google Scholar 

  18. Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.

    Article  CAS  PubMed  Google Scholar 

  19. Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169:425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15:1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alers S, Loffler AS, Wesselborg S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alers S, Loffler AS, Wesselborg S, et al. The incredible ULKs. Cell Commun Signal. 2012;10:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nave BT, Ouwens M, Withers DJ, et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344(Pt 2):427–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peterson RT, Beal PA, Comb MJ, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 2000;275:7416–23.

    Article  CAS  PubMed  Google Scholar 

  27. Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Din FV, Valanciute A, Houde VP, et al. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142:1504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Overholtzer M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131:966–79.

    Article  CAS  PubMed  Google Scholar 

  30. Florey O, Kim SE, Sandoval CP, et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol. 2011;13:1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fiorucci S, Antonelli E, Morelli A. Mechanism of non-steroidal anti-inflammatory drug-gastropathy. Dig Liver Dis. 2001;33(Suppl 2):S35–43.

    Article  CAS  PubMed  Google Scholar 

  32. Gordy C, He YW. The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell. 2012;3:17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.

    Article  CAS  PubMed  Google Scholar 

  34. Wei Y, Pattingre S, Sinha S, et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 2008;30:678–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304:1500–2.

    Article  CAS  PubMed  Google Scholar 

  36. Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–8.

    Article  CAS  PubMed  Google Scholar 

  38. Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cabrera S, Fernandez AF, Marino G, et al. ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy. 2013;9:1188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Brian Normanly for his English language editing. This work was supported by Ministerio de Ciencia e Innovación [grant numbers SAF2010-20231, SAF2010-16030, SAF2013-43441-P and RYC-2011-09571], Ministerio de Sanidad y Consumo [Grant Number PI11/00327], CIBERehd [Grant Number CB06/04/0071] and Generalitat Valenciana [Grant Number PROMETEOII/2014/035]. Carlos Hernandez acknowledges support from the ‘Ramon y Cajal’ program from Ministerio de Ciencia e Innovación of Spain (RYC-2011-09571). Jesús Cosín-Roger is supported by FPU fellowships from Ministerio de Educación, Cultura y Deporte. The support received had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, C., Barrachina, M.D., Vallecillo-Hernández, J. et al. Aspirin-induced gastrointestinal damage is associated with an inhibition of epithelial cell autophagy. J Gastroenterol 51, 691–701 (2016). https://doi.org/10.1007/s00535-015-1137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1137-1

Keywords

Navigation