Skip to main content
Log in

Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Two-photon laser-scanning microscopy (TPLSM) is a powerful diagnostic tool for real-time, high-resolution structural imaging. However, obtaining high-quality in vivo TPLSM images of intra-abdominal organs remains technically challenging.

Materials and methods

An organ-stabilizing system was applied to high-quality TPLSM imaging. Real-time imaging of visceral organs, such as the liver, spleen, kidney and intestine, of transgenic green fluorescent protein (GFP) mice was performed in vivo using TPLSM. The bacterial translocation model using dextran sodium sulfate (DSS)-induced colitis was also investigated in prepared GFP mice following simple surgery. This allowed the capture of morphological real images using in vivo TPLSM. Immunohistochemical analysis of ZO-1 was performed to support the morphological findings of TPLSM.

Results and conclusions

We established an organ-stabilizing system to evaluate the real-time imaging of visceral organs in actin–GFP transgenic mice using in vivo TPLSM. DSS-induced colitis showed irregularity of crypt architecture, disappearance of crypts, inflammatory cell infiltration and increased rolling of white blood cells along the vasculature. In addition, the intercellular distance of mucosal cells in the crypt and vascular endothelial cells in the intestinal wall was increased in the intestinal mucosa during DSS colitis. In DSS colitis, there was remarkable loss of mucosal and vascular endothelial ZO-1 expression, as could be seen by a decrease in ZO-1 staining. In conclusion, our observations suggested the possibility that our TPLSM imaging system can be used to clarify the pathophysiological changes in various diseases using longitudinal studies of microscopic changes in the same animal over long periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Denk W, Svoboda K. Photon upmanship: why multiphoton imaging is more than a gimmic. Neuron. 1997;18:351–7.

    Article  CAS  PubMed  Google Scholar 

  2. So PT, Dong CY, Masters BR, Berland KM. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng. 2000;2:399–429.

    Article  CAS  PubMed  Google Scholar 

  3. Helmchen F, Denk W. New developments in multiphoton microscopy. Curr Opin Neurobiol. 2002;12:593–601.

    Article  CAS  PubMed  Google Scholar 

  4. Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–77.

    Article  CAS  PubMed  Google Scholar 

  5. Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues, and organisms. Nat Biotechnol. 2003;21:1356–60.

    Article  CAS  PubMed  Google Scholar 

  6. Merz J. Nonlinear microscopy: new techniques and applications. Curr Opin Neurobiol. 2004;14:610–6.

    Article  Google Scholar 

  7. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248:73–6.

    Article  CAS  PubMed  Google Scholar 

  8. de Grauw CJ, Vroom JM, van der Voort HTM, Gerristen HC. Imaging properties in two-photon excitation microscopy and effects of refractive index mismatch in thick specimen. Appl Opt. 1999;38:5995–6003.

    Article  PubMed  Google Scholar 

  9. Vroom JM, de GRauw CJ, Gerritsen HC. Depth penetration and detection of pH gradients in biofilm by two-photon excitation microscopy. Appl Environ Microbiol. 1999;65:3502–11.

    CAS  PubMed  Google Scholar 

  10. Stolik S, Delgado JA, Perez A, Anasagasti L. Measurement of the penetration depth of red and near infrared light in human en vivo tissues. J Photochem Photobiol Biol. 2000;57:90–3.

    Article  CAS  Google Scholar 

  11. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA. 2003;100:7319–24.

    Article  CAS  PubMed  Google Scholar 

  12. Bacskai B, Kajdasz S, Christie R, Carter C, Games D, Seubert P, et al. Imaging of amyloid-b deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med. 2001;7:369–72.

    Article  CAS  PubMed  Google Scholar 

  13. Christtie R, Bacskai B, Zipfel W, Wilians Rm Kajdasz S, Webb W, Hyman B. Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci. 2001;21:858–64.

    Google Scholar 

  14. Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Method. 2001;111:29–37.

    Article  CAS  Google Scholar 

  15. Dunn K, Sandoval R, Kelly K, Dagher P, Tanner G, Atkinson S, et al. Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol. 2002;283:C905–16.

    CAS  PubMed  Google Scholar 

  16. Molitoris BA, Sandoval RM. Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol. 2005;288:F1084–9.

    Article  CAS  PubMed  Google Scholar 

  17. Laiho LH, Pelets S, Hancewicz TM, Kaplan PD, So RT. Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra. J Biomed Opt. 2005;10:024016.

    Article  PubMed  Google Scholar 

  18. Roediger B, Ng LG, Smith AL, de St Groth BF, Weninger W. Visualizing dendritic cell migration within the skin. Histochem Cell Biol. 2008;130:1131–46.

    Article  CAS  PubMed  Google Scholar 

  19. Padra TP, Stoll BR, So PTC, Jain RK. Conventional and high speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol Imaging. 2002;1:9–15.

    Article  Google Scholar 

  20. McDonald D, Choyke P. Imaging of angiogenesis: From microscope to clinic. Nat Med. 2003;9:713–25.

    Article  CAS  PubMed  Google Scholar 

  21. Brown E, Campbell R, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001;7:864–8.

    Article  CAS  PubMed  Google Scholar 

  22. Larson D, Zipfel W, Williams R, Carks S, Bruchez M, Wise F, et al. Water-soluble Quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003;300:1434–6.

    Article  CAS  PubMed  Google Scholar 

  23. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2:932–40.

    Article  CAS  PubMed  Google Scholar 

  24. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997;407:313–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dunn KW, Sutton TA. Functional studies in living animals using multiphoton microscopy. ILAR J. 2008;49:66–77.

    CAS  PubMed  Google Scholar 

  26. Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al203 regenerative amplifier. Opt Lett. 2003;28:1022–4.

    Article  CAS  PubMed  Google Scholar 

  27. Watson AJ, Chu S, Sieck L, Gerasimenko O, Bullen T, Campbell F, et al. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology. 2005;129:902–12.

    Article  PubMed  Google Scholar 

  28. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140:12–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gardiner KR, Halliday MI, Barclay GR, Milne L, Brown D, Stephens S, et al. Significance of systemic endotoxaemia in inflammatory bowel disease. Gut. 1995;36:897–901.

    Article  CAS  PubMed  Google Scholar 

  30. Eade MN, Brooke BN. Portal bacteraemia in cases of ulcerative colitis submitted to colectomy. Lancet. 1969;1:1008–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hiromi Ueeda, Yuka Kato, Kenji Kimura and Taiki Kawaida for providing excellent technical assistance.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Toiyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

3-D image of intestinal wall in bacterial translocation model 7 days after DSS treatment (AVI 9135 kb)

Real-time image of the bacterial translocation model in DSS-induced colitis (WMV 2247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toiyama, Y., Mizoguchi, A., Okugawa, Y. et al. Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy. J Gastroenterol 45, 544–553 (2010). https://doi.org/10.1007/s00535-009-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0187-7

Keywords

Navigation