Skip to main content
Log in

The 16 April 2015 M w 6.0 offshore eastern Crete earthquake and its aftershock sequence: implications for local/regional seismotectonics

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We examine the 16 April 2015 M w 6.0 offshore eastern Crete earthquake and its aftershock sequence in southern Aegean Sea. Centroid moment tensors for 45 earthquakes with moment magnitudes (M w) between 3.3 and 6.0 are determined by applying a waveform inversion method. The mainshock is shallow focus thrust event with a strike-slip component at a depth of 30 km. The seismic moment (M o) of the mainshock is estimated as 1.33 × 1018 Nm, and rupture duration of the mainshock is 3.5 s. The focal mechanisms of aftershocks are mainly thrust faulting with a strike-slip component. The geometry of the moment tensors (M w ≥ 3.3) reveals a thrust-faulting regime with NE–SW-trending direction of T axis in the entire activated region. According to high-resolution hypocenter relocation of the eastern Crete earthquake sequence, one main cluster consisting of 352 events is revealed. The aftershock activity in the observation period between 5 January 2015 and 7 July 2015 extends from N to S direction. Seismic cross sections indicate a complex pattern of the hypocenter distribution with the activation of three segments. The subduction interface is clearly revealed with high-resolution hypocenter relocation and moment tensor solution. The best constrained focal depths indicate that the aftershock sequence is mainly confined in the upper plate (depth <40 km) and are ranging from about 4.5 to 39 km depth. A stress tensor inversion of focal mechanism data is performed to obtain a more precise picture of the offshore eastern Crete stress field. The stress tensor inversion results indicate a predominant thrust stress regime with a NW–SE-oriented maximum horizontal compressive stress (S H). According to variance of the stress tensor inversion, to first order, the Crete region is characterized by a homogeneous interplate stress field. We also investigate the Coulomb stress change associated with the mainshock to evaluate any significant enhancement of stresses along Crete and surrounding regions. Positive lobes with stress more than 3 bars are obtained for the mainshock, indicating that these values are large enough to increase the Coulomb stress failure toward NE–SW and NW–SE directions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barka AA, Reilinger R, Şaroğlu F, Şengör AMC (1997) The eastern Isparta angle, its importance in neotectonics of the eastern Mediterranean region. IESCA-1995 Proceedings, vol 1, 3–17

  • Becker D, Meier T, Rische M, Bohnhoff M, Harjes H-P (2006) Spatio-temporal microseismicity clustering in the Cretan region. Tectonophysics 423:3–16

    Article  Google Scholar 

  • Becker D, Meier T, Bohnhoff M, Harjes H-P (2010) Seismicity at the convergent plate boundary offshore Crete, Greece, observed by an amphibian network. J Seismol 14:369–392

    Article  Google Scholar 

  • Benetatos C, Kiratzi A, Papazachos C, Karakaisis G (2004) Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc. J Geodyn 37(2):253–296

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252

    Article  Google Scholar 

  • Bohnhoff M, Makris J, Stavrakakis G, Papanikolaou D (2001) Crustal investigation of the Hellenic subduction zone using wide aperture seismic data. Tectonophysics 343:239–262

    Article  Google Scholar 

  • Bohnhoff M, Meier T, Harjes H-P (2005) Stress regime at the Hellenic Arc from focal mechanisms. J Seismol 9:341–366

    Article  Google Scholar 

  • Bohnhoff M, Grosser H, Dresen G (2006) Strain partitioning and stress rotation at the North Anatolian Fault Zone from aftershock focal mechanisms of the 1999 Izmit Mw = 7.4 Earthquake. Geophys J Int 166:373–385

    Article  Google Scholar 

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • Bouchon M (1979) Discrete wave number representation of elastic wave fields in three-space dimensions. J Geophys Res 84:3609–3614

    Article  Google Scholar 

  • Delibasis N, Ziazia M, Voulgaris N, Papadopoulos T, Stavrakakis G, Papanastassiou D, Drakatos G (1999) Microseismic activity and seismotectonics of the Heraklion area (central Crete Island, Greece). Tectonophysics 308:237–248

    Article  Google Scholar 

  • Delph JR, Biryol CB, Beck SL, Zandt G (2015) Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophys J Int 202:261–276. doi:10.1093/gji/ggv141

    Article  Google Scholar 

  • Endrun B, Meier T, Bischoff M, Harjes H-P (2004) Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities. Geophys J Int 158:592–608

    Article  Google Scholar 

  • Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743

    Google Scholar 

  • Fichtner A, Trampert J, Cupillard P, Saygin E, Taymaz T, Capdeville Y, Villaseñor A (2013a) Multi-scale full waveform inversion. Geophys J Int 194(1):534–556. doi:10.1093/gji/ggt118

    Article  Google Scholar 

  • Fichtner A, Saygin E, Taymaz T, Cupillard P, Capdevillee Y, Trampert J (2013b) The deep structure of the North Anatolian fault zone. Earth Planet Sci Lett 373:109–117. doi:10.1016/j.epsl.2013.04.027

    Article  Google Scholar 

  • Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the san Fernando earthquake sequence. J Geophys Res 89(B11):9305–9320

    Article  Google Scholar 

  • Gerya TV, Stöckhert B (2006) 2-D numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci 95:250–274

    Article  Google Scholar 

  • Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel—a numerical simulation. Tectonics 21:6-1–6-19

    Article  Google Scholar 

  • Görgün E, Bohnhoff M, Bulut F, Dresen G (2010) Seismotectonic settings of the Karadere-Düzce branch of the North Anatolian Fault Zone between the 1999 Izmit and Düzce ruptures from analysis of Izmit aftershock focal mechanisms. Tectonophysics 482:170–181

    Article  Google Scholar 

  • Hardebeck JL, Hauksson E (2001) Stress orientations obtained from earthquake focal mechanisms: what are appropriate uncertainty estimates? Bull Seismol Soc Am 97:826–842

    Article  Google Scholar 

  • Huguen C, Mascle J, Chaumillon E, Woodside JM, Benkhelil J, Kopf A, Volkonskaya A (2001) Deformation styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics 343:21–47

    Article  Google Scholar 

  • Jost M, Knabenbauer O, Cheng J, Harjes H-P (2002) Fault plane solutions of microearthquakes and small events in the Hellenic Arc. Tectonophysics 356:87–114

    Article  Google Scholar 

  • Kind R, Eken T, Tilmann F, Sodoudi F, Taymaz T, Bulut F, Yuan X, Can B, Schneider F (2015) Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions. Solid Earth 6:971–984. doi:10.5194/se-6-971-2015

    Article  Google Scholar 

  • King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84:935–953

    Google Scholar 

  • Kiratzi A, Louvari E (2003) Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. J Geodyn 36(1–2):251–274

    Article  Google Scholar 

  • Knapmeyer M, Harjes H-P (2000) Imaging crustal discontinuities and the downgoing slab beneath western Crete. Geophys J Int 143:1–22

    Article  Google Scholar 

  • Kreemer C, Chamot-Rooke N (2004) Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophys J Int 157:1377–1392

    Article  Google Scholar 

  • Le Pichon X, Kreemer C (2010) The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annu Rev Earth Planet Sci 38:323–351

    Article  Google Scholar 

  • Le Pichon X, Chamot-Rooke N, Lallemant S (1995) Geodetic determination of the kinematics of central Greece with respect to Europe: implications for eastern Mediterranean tectonics. Geophys Res 100:12675–12690

    Article  Google Scholar 

  • Lienert BRE, Havskov J (1995) A computer program for locating earthquakes both locally and globally. Seismol Res Lett 66:26–36

    Article  Google Scholar 

  • Lin J, Stein RS (2004) Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res 109:B02303. doi:10.1029/2003JB002607

    Article  Google Scholar 

  • Lu Z, Wyss M, Pulpan H (1997) Details of stress directions in the Alaska subduction zone from fault plane solutions. J Geophys Res 102:5385–5402

    Article  Google Scholar 

  • Lund B, Slunga R (1999) Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J Geophys Res 104:14.947–14.964

    Article  Google Scholar 

  • Mascle J, Le Cleach A, Jongsma D (1986) The eastern Hellenic margin from Crete to Rhodes: example of progressive collision. Mar Geol 73:145–168

    Article  Google Scholar 

  • McCloskey J, Nalbant SS, Steacy S, Nostro C, Scotti O, Baumont D (2003) Structural constraints on the spatial distribution of aftershocks. Geophys Res Lett 30(12):1610. doi:10.1029/2003GL017225

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • McKenzie D (1978) Active Tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J Int 55:217–254

    Article  Google Scholar 

  • Meier T, Rische M, Endrun B, Vafidis A, Harjes H-P (2004) Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics 383:149–169

    Article  Google Scholar 

  • Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:11517–11526

    Article  Google Scholar 

  • Michael AJ (1987) Use of focal mechanisms to determine stress: a control study. J Geophys Res 92:357–368

    Article  Google Scholar 

  • Michael AJ (1991) Spatial variations of stress within the 1987 Whittier Narrows, California, aftershock sequence: new techniques and results. J Geophys Res 96:6303–6319

    Article  Google Scholar 

  • Michael AJ, Ellsworth WL, Oppenheimer D (1990) Co-seismic stress changes induced by the 1989 Loma Prieta, California earthquake. Geophys Res Lett 17:1441–1444

    Article  Google Scholar 

  • Nakano M, Kumagai H, Inoue H (2008) Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function. Geophys J Int 173:1000–1011

    Article  Google Scholar 

  • Nakano M, Yamashina T, Kumagai H, Inoue H, Sunarjo (2010) Centroid moment tensor catalogue for Indonesia. Phys Earth Planet Inter 183:456–467

    Article  Google Scholar 

  • Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109:B11406. doi:10.1029/2003JB002830

    Article  Google Scholar 

  • Papazachos BC (1996) Large seismic faults in the Hellenic arc. Ann Geofis 39:891–903

    Google Scholar 

  • Papazachos BC, Karakostas VG, Papazachos CB, Scordilis EM (2000) The geometry of the Wadati–Benioff zone and lithospheric kinematics in the Hellenic Arc. Tectonophysics 319:275–300

    Article  Google Scholar 

  • Reasenberg PA, Simpson RW (1992) Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science 255:1687–1690. doi:10.1126/science.255.5052.1687

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. doi:10.1029/2005JB004051

    Article  Google Scholar 

  • Reilinger R, McClusky S, Paradissis D, Ergintav S, Vernant P (2010) Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488:22–30

    Article  Google Scholar 

  • Roumelioti Z, Kiratzi A, Benetatos C (2011) Time-Domain Moment Tensors for shallow (h ≤ 40 km) earthquakes in the broader Aegean Sea for the years 2006 and 2007: the database of the Aristotle University of Thessaloniki. J Geodyn 51:179–189

    Article  Google Scholar 

  • Saltogianni V, Gianniou M, Taymaz T, Yolsal-Çevikbilen S, Stiros S (2015) Fault-Slip Source Models for the 2014 Mw 6.9 Samothraki-Gökçeada Earthquake (North Aegean Trough): combining geodetic and seismological observations. J Geophys Res (JGR) Solid Earth. doi:10.1002/2015JB012052

    Google Scholar 

  • Şaroğlu F, Emre Ö, Kuşcu İ (1992) Active Fault Map of Turkey, General Directorate of Mineral Research and Exploration (MTA), Eskisehir Yolu, 06520, Ankara, Turkey

  • Şengör AMC, Görür N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Society of Economic Paleontologists and Mineralogists. Special Publication, vol 37, pp 227–264

  • Shaw B, Jackson J (2010) Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophys J Int 181:966–984

    Google Scholar 

  • Skarlatoudis AA, Papazachos CB, Margaris BN, Papaioannou C, Ventouzi C, Vamvakaris D, Bruestle A, Meier T, Friederich W, Stavrakakis G, Taymaz T, Kind R, Vafidis A, Dahm T (2009) Combination of acceleration-sensor and broadband velocity-sensor recordings for attenuation studies: the case of the 8 January 2006 Kythera Intermediate-Depth Earthquake. Bull Seismol Soc Am 99(2A):694–704. doi:10.1785/0120070211

    Article  Google Scholar 

  • Sodoudi F, Kind R, Hatzfeld D, Priestly K, Hanka W, Wylegalla K, Stavrakakis G, Vafidis A, Harjes H-P, Bohnhoff M (2006) Lithospheric structure of the Aegean obtained from P and S receiver functions. J Geophys Res 111:B12307. doi:10.1029/2005JB003932

    Article  Google Scholar 

  • Taymaz T, Price S (1992) The 1971 May 12 Burdur Earthquake sequence, SW Turkey: a synthesis of seismological and geological observations. Geophys J Int 108:589–603

    Article  Google Scholar 

  • Taymaz T, Jackson J, Westaway R (1990) Earthquake mechanisms in the Hellenic Trench near Crete. Geophys J Int 102:695–731

    Article  Google Scholar 

  • Taymaz T, Jackson JA, McKenzie D (1991) Active tectonics of the north and central Aegean Sea. Geophys J Int 106:433–490

    Article  Google Scholar 

  • ten Veen JH, Kleinspehn KL (2003) Incipient continental collision and plate-boundary curvature: late Pliocene–Holocene transtensional Hellenic forearc, Crete, Greece. J Geol Soc 160:161–181

    Article  Google Scholar 

  • Toda S, Stein RS, Richards-Dinger K, Bozkurt S (2005) Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J Geophys Res 110:B05S16. doi:10.1029/2004JB003415

    Article  Google Scholar 

  • Toda S, Lin J, Meghraoui M, Stein RS (2008) 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys Res Lett 35:L17305. doi:10.1029/2008GL034903

    Article  Google Scholar 

  • Toda S, Stein RS, Lin J (2011) Widespread seismicity excitation throughout central Japan following the 2011 M = 9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophys Res Lett 38:L00G03. doi:10.1029/2011GL047834

    Article  Google Scholar 

  • Vanacore EA, Taymaz T, Saygin E (2013) Moho structure of the Anatolian Plate from receiver function analysis. Geophys J Int 193(1):329–337. doi:10.1093/gji/ggs107

    Article  Google Scholar 

  • Vavryčuk V (2014) Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int 199:69–77. doi:10.1093/gji/ggu224

    Article  Google Scholar 

  • Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the Northern Hayward fault, California. Bull Seismol Soc Am 90:1353–1368

    Article  Google Scholar 

  • Wallace RE (1951) Geometry of shearing stress and relationship to faulting. J Geol 59:118–130

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools Released. EOS Trans., American Geophysical Union, 79, 579

  • Wiemer S, Gerstenberger MC, Hauksson E (2002) Properties of the 1999, Mw 7.1, Hector Mine earthquake: implications for aftershock hazard. Bull Seismol Soc Am 92:1227–1240

    Article  Google Scholar 

  • Yolsal-Çevikbilen S, Taymaz T (2012) Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical Tsunamis in the Eastern Mediterranean. Tectonophysics 536–537:61–100. doi:10.1016/j.tecto.2012.02.019

    Article  Google Scholar 

  • Yolsal-Çevikbilen S, Taymaz T, Helvacı C (2014) Earthquake mechanisms in the Gulfs of Gökova, Sığacık, Kuşadası, and the Simav Region (western Turkey): neotectonics, seismotectonics and geodynamic implications. Tectonophysics 635:100–124. doi:10.1016/j.tecto.2014.05.001

    Article  Google Scholar 

  • Zang A, Stephansson O (2010) Stress field of the Earth’s crust. Springer, Dordrecht

    Book  Google Scholar 

  • Zoback ML (1992) First and second order patterns of stress in the lithosphere: the world stress map project. J Geophys Res 97:11703–11728

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank all members of Kandilli Observatory and Earthquake Research Institute, Disaster and Emergency Management Presidency Earthquake Department and the GeoForschungsZentrum Potsdam GEOFON, Seismological Network of Crete, National Observatory of Athens, Aristotle University of Thessaloniki Seismological and MEDNET for providing the continuous seismological data used in this study. The author is also grateful to Dr. Masaru Nakano for providing the waveform inversion code. We would like to thank Prof. Dr. Wolf-Christian Dullo (Editor in Chief), Prof. Dr. Tuncay Taymaz and one anonymous reviewer for their constructive comments and suggestions, which improved the manuscript. All figures are generated by Generic Mapping Tools (GMT) code developed by Wessel and Smith (1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethem Görgün.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Görgün, E., Kekovalı, K. & Kalafat, D. The 16 April 2015 M w 6.0 offshore eastern Crete earthquake and its aftershock sequence: implications for local/regional seismotectonics. Int J Earth Sci (Geol Rundsch) 106, 1735–1751 (2017). https://doi.org/10.1007/s00531-016-1382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1382-4

Keywords

Navigation