Skip to main content

Advertisement

Log in

Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions

  • Review article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Characteristics of cold seeps at different geologic settings are the subject of this review primarily based on results of the Research Consortium SFB 574. Criteria are drawn from examples on the erosive convergent margin off Costa Rica, the accretionary margin off Chile supplemented by examples from the transform margin of the Golf of Cadiz and the convergent Hikurangi margin off New Zealand. Others are from well-studied passive margins of the Black Sea, the Golf of Mexico, the eastern Mediterranean Sea and the South China Sea. Seeps at all settings transport water and dissolved compounds to the ocean through the seafloor by different forcing mechanism and from different depths of the submerged geosphere (10s of meters to 10s of km). The compounds sustain oasis-type ecosystems by providing bioactive reductants sulfide, methane and hydrogen. Hereby, the interaction between fluid composition, flux rates and biota results in a diagnostic hydrocarbon–metazoan–microbe–carbonate association; currently, well over 100 active sites are known. The single most important reaction is microbially mediated anaerobic oxidation of methane with secondary reactions involving S-biogeochemistry and carbonate mineral precipitation. Seep fluids and their seafloor manifestations provide clues as to source depth, fluid–sediment/rock interaction during ascent, lifetime and cyclicity of seepage events but less so on the magnitude of return flow. At erosive margins, Cl-depleted and B-enriched fluids from clay dehydration provide criteria for source depth and temperature. The upward material flow generates mud volcanoes at the seafloor above the projected location of dehydration at depth. At accretionary margins, fluids are derived from more shallow depths by compaction of sediments as they ride on the incoming oceanic plate; they are emitted through thrust faults. At highly sedimented margins, organic-rich and evaporite-containing strata (when present) determine the final fluid composition, by emitting characteristically gas hydrate-derived methane, brine-associated non-methane hydrocarbons or leached elements and their isotopes (Li, δ7Li, B, Ba) from host sediments. Smectite–illite transformation and associated Cl-depletion from release of interlayer water is a pervasive process at these margins. Rare earth element pattern in conjunction with redox-sensitive metals retained in seep carbonates indicate whether or not they precipitated in contact with oxic bottom water or suboxic fluids; clear environmental characterization, though, currently remains inconclusive. More deeply sourced fluids as in transform margins may be characterized by their 87Sr/86Sr ratios from interaction with oceanic crustal rocks below. Quantification of flow and reliable estimates of total volatile output from fore-arcs remain a challenge to seep research, as does understanding the role of geologically derived methane in the global methane cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aloisi G, Pierre C, Rouchy C, Foucher JP, Woodside J, The MEDINAUT Scientific Party (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett 184:321–338

    Google Scholar 

  • Aloisi G, Wallmann K, Drews M, Bohrmann G (2004a) Evidence for the submarine weathering of silicate minerals in Black Sea sediments: possible implications for the marine Li and B cycles. Geochem Geophys Geosyst 5:Q04007. doi:10.1029/2003GC000639

    Google Scholar 

  • Aloisi G, Wallmann K, Bollwerk SM, Derkachev A, Bohrmann G, Suess E (2004b) The effect of dissolved barium on biogeochemical processes at cold seeps. Geochim Cosmochim Acta 68(8):1735–1748

    Google Scholar 

  • Baco AR, Rowden AA, Levin LA, Smith CR, Bowden DA (2010) Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Mar Geol 272:251–259

    Google Scholar 

  • Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, Netzeband GL, Greinert J, Mountjoy JJ, Pedley K, Crutchley G (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272:26–48

    Google Scholar 

  • Barrie JV, Conway KW, Harris PT (2013) The Queen Charlotte Fault, British Columbia: seafloor anatomy of a transform fault and its influence on sediment processes. Geo-Mar Lett 33:311–318

    Google Scholar 

  • Bayon G, Pierre C, Etoubleau J, Voisset M, Cauquil E, Marsset T, Sultan N, Le Drezen E, Fouquet Y (2007) Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments. Mar Geol 241:93–109

    Google Scholar 

  • Bayon G, Birot D, Ruffine L, Caprais JC, Ponzevera E, Bollinger C, Donval JP, Charlou JL, Voisset M, Grimaud S (2011) Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earh Planet Sci Lett 312(3–4):443–452

    Google Scholar 

  • Birgel D, Himmler T, Freiwald A, Peckmann J (2008) A new constraint on the antiquity of anaerobic oxidation of methane: late Pennsylvanian seep limestones from southern Nambia. Geology 36:543–546

    Google Scholar 

  • Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci 6:725–734. doi:10.1038/NGEO1926

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Bohrmann G, Jørgensen BB (eds) (2010) Proceedings of the 9th international conference on gas in marine sediments, Bremen, Germany. Geo-Mar Lett SI 30(3/4):151–476

  • Bohrmann G, Greinert J, Suess E, Torres ME (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650

    Google Scholar 

  • Bohrmann G, Linke P, Suess E, Pfannkuche O (eds) (2000) RV SONNE Cruise Report SO143, TECFLUX-I GEOMAR Report 93, 217 pp

  • Bohrmann G, Ivanov MK et al (2003) Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Mar Lett 23(3–4):239–249

    Google Scholar 

  • Buchardt B, Seaman P, Stockmann G, Vous M, Wilken U, Duwel L, Kristiansen A, Jenner C, Whiticar MJ, Kristensen RM, Petersen GH, Thorbjorn L (1997) Submarine columns of ikaite tufa. Nature 390:129–130

    Google Scholar 

  • Buerk D, Klaucke I, Sahling H, Weinrebe W (2010) Morpho-acoustic variability of cold seeps on the continental slope offshore Nicaragua: result of fluid flow interaction with sedimentary processes. Mar Geol 275:53–65

    Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Google Scholar 

  • Camerlenghi A, Cita MB, Della Vedova M, Fusi N, Mirabile LG, Pellis G (1995) Geophysical evidence for mud diapirism on the Mediterranean Ridge accretionary complex. Mar Geophys Res 17:115–141

    Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent palaeo-environments: past developments and future research directions. Palaeogeogr Palaeoclimat Palaeoecol 232:362–407

    Google Scholar 

  • Campbell KA, Farmer JD, DeMarais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and paleoenvironment. Geofluids 2:63–94

    Google Scholar 

  • Carpenter BM, Marone C, Saffer DM (2011) Weakness of the San Andreas Fault revealed by samples from the active fault zone. Nat Geosci 4:251–254

    Google Scholar 

  • Chan LH, Kastner M (2000) Lithium isotope compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution in the arc volcanoes. Earth Planet Sci Lett 183:275–290

    Google Scholar 

  • Chen D, Huang Y, Yuan X, Cathles LM III (2005) Seep carbonates and preserved methane oxidizing bacteria and sulfur reducing bacteria fossils suggest recent gas venting an the seafloor in the northeastern South China. Mar Petrol Geol 22:613–621

    Google Scholar 

  • Collett T et al (2008) Indian continental margin gas hydrate prospects: results of the Indian national gas hydrate program (NGHP) Exp. 01. In: Proceedings of the 6th International conference gas hydrates, Vancouver, BC, Canada July 6–10. https://circle.ubc.ca/handle/2429/1022

  • Colten-Bradley VA (1987) Role of pressure in smectite dehydration: effects on geopressure and smectite to illite transformation. Am Assoc Petrol Geol Bull 71:1414–1427

    Google Scholar 

  • Cordes EE, Carney SL, Hourdez S, Carney R, Brooks JM, Fisher CR (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic and Caribbean seep communities. Deep Sea Res I 54:637–653

    Google Scholar 

  • Crémiere A, Pierre C, Blanc-Valleron MM, Zitter T, Cagatay MN, Henry P (2012) Methane-derived authigenic carbonates along the North Anatolian fault system in the Sea of Marmara (Turkey). Deep Sea Res I 66:114–130

    Google Scholar 

  • Crutchley GJ, Berndt C, Geiger S, Klaeschen D, Papenberg C, Klaucke I, Hornbach MJ, Bangs NLB, Maier C (2013) Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA. Geology 41:551–554

    Google Scholar 

  • Dählmann A, de Lange G (2003) Fluid–sediment interactions at eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sci Lett 212:377–391

    Google Scholar 

  • De Batist M, Khlystov O (eds) (2012) Proceedings of the 10th international conference on gas in marine sediments, Listvyanka, Russia. Geo-Mar Lett SI 32(5/6):373–562

  • Decarreau AN, Vigier N, Pálkováa H, Petita S, Vieillarda P, Fontainea C (2012) Partitioning of lithium between smectite and solution: an experimental approach. Geochim Cosmochim Acta 85:314–325

    Google Scholar 

  • Dupré S, Woodside J, Foucher JP, de Lange G, Mascle J, Boetius A, Mastalerz V, Stadniskaia A, Ondréas H, Huguen C, Harmégnies F, Gontharet S, Loncke L, Deville HEN, Omoregie E, Roy KOL, Fiala-Medioni A, Dählmann A, Caprais JC, Prinzhofer A, Sibuet M, Pierre C, NAUTINIL Scientific Party (2007) Seafloor geological studies above active gas chimneys off Egypt (Central Nile Deep Sea Fan). Deep Sea Res 54:1146–1172

    Google Scholar 

  • Elvert M, Suess E, Whiticar M (1999) Anaerobic methane oxidation associated with marine gas hydrates. Superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Google Scholar 

  • Feng D, Roberts HH, Cheng H, Peckmann J, Bohrmann G, Edwards RL, Chen D (2010) U/Th dating of cold-seep carbonates: an initial comparison. Deep Sea Res II 57:2055–2060

    Google Scholar 

  • Feseker T, Foucher JP, Harmegnies F (2008) Fluid flow or mud eruptions? Sediment temperature distribution on Håkon Mosby mud volcano, SW Barents Sea slope. Mar Geol 247:194–207

    Google Scholar 

  • Feseker T, Brown K, Blanchet C, Scholz F, Nuzzo M, Reitz A, Schmidt M, Hensen C (2010) Active mud volcanoes on the upper slope of the western Nile deep-sea fan—first results from the P362/2 cruise of R/V Poseidon. Geo-Mar Lett 30(3/4):169–186

    Google Scholar 

  • Flueh ER, Suess E, Soeding E (eds) (2004) Cruise Report SO173/1 and SO173/3+4 subduction II. GEOMAR Report 115, 491

  • Foucher JP, Dupré S, Scalabrin C, Feseker T, Harmegnie F, Nouzé H (2010) Changes in seabed morphology, mud temperature and free gas venting at the Hakon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006. Geo-Mar Lett 30(3–4):157–167

    Google Scholar 

  • Freundt A, Grevemeyer I, Rabbel W et al (2014) Volatile (H2O, CO2, Cl, S) budget of the Central American subduction zone. Int J Earth Sci. doi:10.1007/s00531-014-1001-1

  • Freytag JK, Girguis PR, Bergquist DC, Andras JP, Childress JJ, Fisher CR (2001) A paradox resolved: sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy. Proc Natl Acad Sci 98:13408–13413

    Google Scholar 

  • Fryer P, Mottl M, Johnson L, Haggerty L, Phipps S, Maekawa H (1995) Serpentine bodies in the forearc of Western Pacific convergent margins: origin and associated fluids. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific. Am Geophys Union Geophys Monogr 88:259–279

  • Fürli E, Hilton DR, Brown KM, Tryon MD (2009) Helium systematics of cold seep fluids at Monterey Bay, California, USA: temporal variations and mantle contributions. Geochem Geophys Geosyst 10(8):Q08013. doi:10.1029/2009GC002557

  • Gallardo AH, Marui A (2006) Submarine groundwater discharge: an outlook of recent advances and current knowledge. Geo-Mar Lett 26:102–113

    Google Scholar 

  • Garcia-Gil S, Judd A (2007) Gas in marine sediments VIII: an introduction to the Vigo conference of the shallow gas group. Geo-Mar Lett 27:71–74

    Google Scholar 

  • Ge L, Jiang SY, Swennen R et al (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277(1–4):21–30

    Google Scholar 

  • Geersen J, Behrmann JH, Völker D, Krastel S, Ranero CR, Diaz‐Naveas J, Weinrebe W (2011) Active tectonics of the South Chilean marine fore arc (35°S–40°S) Tectonics 30. doi:10.1029/2010TC002777

  • Geli L, Henry P, Zitter T, MARNAUT Scientific Party (2008) Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth Planet Sci Lett 274:34–39

    Google Scholar 

  • German CR, Ramirez-Llodra E, Baker MC, Tyler PA, ChEss Scientific Steering Committee (2011) Deep-Water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map. PLoS One 6(8):e23259

    Google Scholar 

  • Gontharet S, Pierre C, Blanc-Valleron MM, Rouchy JM, Fouqet Y, Bayon G, Foucher JP, Woodside J, Mascle J et al (2007) Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep Sea Res II 54:1292–1311

    Google Scholar 

  • Gracia A, Rangel-Buitrago N, Sellanes J (2010) Evidences of the presence of Methane Seeps in the Colombian Caribbean Sea. EGU general assembly, Vienna, p 3632

  • Greinert J (2008) Monitoring temporal variability of bubble release at seeps: the hydroacoustic swath system GasQuant. J Geophys Res 113. doi:10.1029/2007JC004704

  • Greinert J, Derkachev A (2004) Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, eastern Siberia: implications of a venting-related ikaite/glendonite formation. Mar Geol 204:129–144

    Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane venting at Hydrate Ridge: classification, distribution and origin of authigenic lithologies. In: Paull C, Dillon W (eds) Natural gas hydrates: occurrence, distribution, and detection. Am Geophys Union Wash Monogr 124:99–113

  • Greinert J, Bollwerk SM, Derkachev A, Bohrmann G, Suess E (2002) Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites. Earth Planet Sci Lett 203:165–180

    Google Scholar 

  • Greinert J, Artemov Y, Egorov V, De Batist M, McGinnis D (2006) 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet Sci Lett 244:1–15

    Google Scholar 

  • Greinert J, Bialas J, Lewis K, Suess E (eds) (2010) Methane seeps at the Hikurangi Margin, New Zealand. Mar Geol 272. doi:10.1016/j.margeo.2010.02.018

  • Gutscher MA, Dominguez S, Westbrook GK, Le Roy P, Rosas F, Duarte CD, Terrinha P, Miranda JM, Graindorge D, Gailler A, Sallares V, Bartolome R (2012) The Gibraltar subduction: a decade of new geophysical data. Tectonophysics 574(576):72–91

    Google Scholar 

  • Haas A, Peckmann J, Elvert M, Sahling H, Bohrmann G (2010) Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Mar Geol 268:129–136

    Google Scholar 

  • Haeckel M, Suess E, Wallmann K, Rickert D (2004) Rising methane gas-bubbles form massive hydrate layers at the seafloor. Geochim Cosmochim Acta 68:4335–4345

    Google Scholar 

  • Haeckel M, Boudreau BP, Wallmann K (2007) Bubble-induced porewater mixing: a 3-D model for deep porewater irrigation. Geochim Cosmochim Acta 71:5135–5154

    Google Scholar 

  • Haffert L, Haeckel M, Liebetrau V, Berndt C, Hensen C, Nuzzo M, Reitz A, Scholz F, Schönfeld J, Perez-Garcia C, Weise SW (2013) Fluid evolution and authigenic mineral paragenesis related to salt diapirism—the Mercator mud volcano in the Gulf of Cadiz. Geochim Cosmochim Acta 106:261–286

    Google Scholar 

  • Halliday EJ, Barrie JV, Chapman NR, Rohr KMM (2008) Structurally controlled hydrocarbon seeps on a glaciated continental margin, Hecate Strait, offshore British Columbia. Mar Geol 252:193–206

    Google Scholar 

  • Han X, Suess E, Sahling H, Wallmann K (2004) Fluid venting activity on the Costa Rica margin: new results from authigenic carbonates. Int J Earth Sci 93:596–611

    Google Scholar 

  • Han X, Suess E, Huang Y, Wu N, Bohrmann G, Su X, Eisenhauer A, Rehder G, Fang Y (2008) Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Mar Geol 249:243–256

    Google Scholar 

  • Han X, Suess E, Liebetrau V, Eisenhauer A, Huang YY (2014) Past methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints from seep carbonates (this volume)

  • Heeschen KU, Haeckel M, Klaucke I, Ivanov MK, Bohrmann G (2011) Quantifying in situ gas hydrates at active seep sites in the eastern Black Sea using pressure coring technique. Biogeosciences 8:3555–3565

    Google Scholar 

  • Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32:201–204

    Google Scholar 

  • Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhaes VH, Brückmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232–1248

    Google Scholar 

  • Hilario A, Cunha MR (2008) On some frenulate species (Annelida: Polychaeta: Siboglinidae) from mud volcanoes in the Gulf of Cadiz (NE Atlantic). Sci Mar 72(2):361–371

    Google Scholar 

  • Himmler T, Bach W, Bohrmann G, Peckmann J (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277:126–136

    Google Scholar 

  • Himmler T, Haley BA, Torres ME, Klinkhammer GP, Bohrmann G, Peckmann J (2013) Rare earth element geochemistry in cold seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Mar Lett 33:369–379

    Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SPO, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Google Scholar 

  • Hovland M (2007) Discovery of prolific natural methane seeps at Gullfaks, northern North Sea. Geo-Mar Lett 27:197–201

    Google Scholar 

  • Huang C-Y, Chien C-W, Zhao M-X, Li H-C, Iizuka Y (2006) Geological study of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan. Terr Atmos Ocean Sci 17(4):679–702

    Google Scholar 

  • Iglesias J, Ercilla G, García-Gil S, Judd AG (2010) Pockforms: an evaluation of pockmark-like seabed features on the Landes Plateau, Bay of Biscay. Geo-Mar Lett 30:207–219

    Google Scholar 

  • IODP Prelim. Rept. Expedition 344 Scientists (2013) Costa Rica Seismogenesis project, Program A Stage 2 (CRISP-A2): sampling and quantifying lithologic inputs and fluid inputs and outputs of the seismogenic zone. Prel Rep 344. doi:10.2204/iodp.pr.344

  • Ivandic M, Grevemeyer I, Bialas J, Petersen CP (2010) Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data. Geophys J Int 180:1253–1264

    Google Scholar 

  • Ivanov AV (1963) Pogonophora. Publ Consultants Bureau, New York

    Google Scholar 

  • Jansen JHF, Woensdregt CF, Kooistra MJ, van de Gaast SJ (1987) Ikaite pseudomorphs in the Zaire deep-sea fan: an intermediate between calcite and porous calcite. Geology 15:245–248

    Google Scholar 

  • Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 4(5):8905. doi:10.1029/2002GC000392

    Google Scholar 

  • Jeong KS, Cho JH, Kim SR, Hyun S, Tsunogai U (2004) Geophysical and geochemical observations on actively seeping hydrocarbon gases on the south-eastern Yellow Sea continental shelf. Geo-Mar Lett 24:53–62

    Google Scholar 

  • Jones AT, Greinert J, Bowden DA, Klaucke I, Petersen CJ, Netzeband GL, Weinrebe W (2010) Acoustic and visual characterization of methane-rich seabed seeps at Omakere Ridge on the Hikurangi Margin, New Zealand. Mar Geol 272:154–169

    Google Scholar 

  • Judd AG, Hovland M (2007) Submarine fluid flow, the impact on geology, biology, and the marine environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Judd AG, Croker P, Tizzard L (2007) Extensive methane-derived authigenic carbonates in the Irish Sea. Geo-Mar Lett 27:259–267

    Google Scholar 

  • Karaca D, Schleicher T, Hensen C, Linke P, Wallmann K (2012) Quantification of methane emission from bacterial mat sites at Quepos slide offshore Costa Rica. Int J Earth Sci. doi:10.1007/s00531-012-0839-3

  • Karpen V, Thomsen L, Suess E (2004) A new ‘schlieren’ technique application for fluid flow visualization at cold seep sites. Mar Geol 204:145–159

    Google Scholar 

  • Kasten S, Nöthen K, Hensen C, Spieß V, Blumenberg M, Schneider RR (2012) Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan. Geo-Mar Lett. doi:10.1007/s00367-012-0288-9

  • Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J (2011) Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu Rev Earth Planet Sci 39:545–576

    Google Scholar 

  • Kennicutt MC et al (1985) Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature 317:351–353

    Google Scholar 

  • Kiel S (2009) Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurrasic. Terra Nova 21:279–284

    Google Scholar 

  • Kiel S (ed) (2010) The Vent and Seep Biota: aspects from microbiology to ecosystems, vol, 33. Topics in geobiology. Springer, Heidelberg

    Google Scholar 

  • Klaucke I, Weinrebe W, Petersen CJ, Bowden D (2010) Temporal variability of gas seeps offshore New Zealand: multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin. Mar Geol 272:49–58

    Google Scholar 

  • Klaucke I, Weinrebe W, Linke P, Klaeschen D, Bialas J (2012) Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin. Geo-Mar Lett 32:489–499

    Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J 20:269–294. doi:10.1080/01490450390241008

    Google Scholar 

  • Koleshnikov A, Kutcherov VG, Goncharov AF (2009) Methane-derived hydrocarbons produced under upper-mantle conditions. Nat Geosci 2:566–570

    Google Scholar 

  • Krause S, Liebetrau V, Gorb S, Sanchez-Roman M, McKenzie JA, Treude T (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40(7):587–590

    Google Scholar 

  • Krylova EM, Sahling H (2010) Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS One 5(4):e9957

    Google Scholar 

  • Kulm LD, Suess E, Moore JC, Carson B, Lewis BT, Ritger SD, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochrane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna, and carbonates. Science 231:561–566

    Google Scholar 

  • Kutterolf S, Liebetrau V, Mörz T, Freundt A, Hammerich T, Garbe-Schönberg CD (2008) Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates. Geology 36(9):707–710

    Google Scholar 

  • Leefmann T, Bauermeister J, Kronz A, Liebetrau J, Reitner J, Thiel V (2008) Miniturized biosignature analysis reveals implications for the formation of cold seep carbonates at Hydrate Ridge (off Oregon USA). Biogeosciences 5:731–738

    Google Scholar 

  • León R, Somoza L, Medialdea T et al (2012) New discoveries of mud volcanoes on the Moroccan Atlantic continental margin (Gulf of Cádiz): morpho-structural characterization. Geo-Mar Lett 32:473–488

    Google Scholar 

  • LePichon X, Ilyami T, Boulegue J, Charvet J et al (1987) Nankai trough and Zenisu ridge: a deep-sea submersible survey. Earth Planet Sci Lett 83(181):285–299

    Google Scholar 

  • Levin LA (2005) Ecology of cold seep ecosystems: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annu Rev 43:1–46

    Google Scholar 

  • Liebetrau V, Eisenhauer A, Linke P (2010) Cold seep carbonates and associated cold-water corals at the Hikurangi Margin, New Zealand: new insights into fluid pathways, growth structures and geochronology. Mar Geol 272:307–318

    Google Scholar 

  • Liebetrau V, Augustin N, Kutterolf S, Schmidt M, Eisenhauer A, Garbe-Schönberg D, Weinrebe W (2014) Cold seep driven carbonate deposits at the Central American Forearc—contrasting evolution and timing in escarpment and mound settings. Int J Earth Sci (this volume)

  • Limonov AF, Woodside JM, Cita MB, Ivanov MK (1996) The Mediterranean Ridge and related mud diapirism: a background. Mar Geol 132:7–19

    Google Scholar 

  • Lin AT, Liu C-S, Lin C–C, Schnurle P, Chen G-Y, Liao W-Z, Teng L-S, Chuang H-J, Wu M-S (2008) Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan. Mar Geol 255:186–203

    Google Scholar 

  • Linke P (ed) (2011) FS SONNE Fahrtbericht/Cruise Report SO-210 ChiFlux. IFM-GEOMAR Report, pp 112, ISSN Nr. 1614-6298

  • Linke P, Wallmann K, Suess E, Hensen C, Rehder G (2005) In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin. Earth Planet Sci Lett 235:79–95

    Google Scholar 

  • Loncke L, Mascle J, Fanil Scientific Party (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences. Mar Pet Geol 21:669–689

    Google Scholar 

  • Loncke L, Gaullier V, Mascle J, Vendeville B, Camera L (2006) The Nile deep-sea fan: an example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features. Mar Pet Geol 23:297–315

    Google Scholar 

  • Lonsdale P (1979) A deep-sea hydrothermal site on a strike-slip fault. Nature 281:531–534

    Google Scholar 

  • Lu H-F, Liu J, Chen F, Liao Z-L, Sun X-M, Su X (2005) Mineralogy and stable isotope composition of authigenic carbonates in bottom sediments in the offshore area of southwest Taiwan, South China Sea, evidence for gas hydrate occurrence. Earth Sci Fronties 12(3):268–276

    Google Scholar 

  • Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green G (2006) Formation and evolution of carbonate chimneys at the Lost City hydrothermal field. Geochim Cosmochim Acta 70:3625–3645

    Google Scholar 

  • MacDonald IR, Reilly JF, Guinasso NL Jr, Brooks JM, Carney RS, Bryant WA, Bright TJ (1990) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248:1096–1099

    Google Scholar 

  • MacDonald IR et al (2004) Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304:999–1002

    Google Scholar 

  • Maekawa T (2004) Experimental study on isotopic fractionation in water during gas hydrate formation. Geochem J 38:129–138

    Google Scholar 

  • Martin RA, Nesbitt EA, Campbell KA (2010) The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Mar Geol 272:270–284

    Google Scholar 

  • Mastarlerz V, de Lange GJ, Dählmann A, Feseker T (2007) Active venting at the Isis mud volcano, offshore Egypt: origin and migration of hydrocarbons. Chem Geol 246:87–106

    Google Scholar 

  • Matsumoto R (1989) Isotopically heavy oxygen-containing siderite derived from the decomposition of methane hydrate. Geology 17:707–711

    Google Scholar 

  • Matsumoto R, Borowski WS (2000) Gas hydrate estimates from newly determined oxygen isotopic fractination aGH–IW and δ18O anomalies of the interstitial waters: Leg 164, Blake Ridge. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Res 164:59–66

  • Matsumoto R, Riedel M, Lin S, Ryu BJ, Sain K, Lu H (eds) (2011) Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia, India and Oceania region. Mar Pet Geol 28(10):1751–1986

  • Mau S, Rehder G, Sahling H, Schleicher T, Linke P (2012) Seepage of methane at Jaco Scar, a slide caused by seamount subduction offshore Costa Rica. Int J Earth Sci. doi:10.1007/s00531-012-0822-z

  • Mavromatis V, Botz R, Schmidt M, Liebetrau V, Hensen C (2012) Formation of carbonate concretions in surface sediments of two mud mounds offshore Costa Rica: a stable isotope study. Int J Earth Sci. doi:10.1007/s00531-012-0843-7

  • Mazzini A, Ivanov MK, Nermoen A, Bahr A, Bohrmann G, Svensen H, Planke S (2008) Complex plumbing systems in the near subsurface: geometries of authigenic carbonates from Dolgovskoy Mound (Black Sea) constrained by analogue experiments. Mar Pet Geol 25:457–472

    Google Scholar 

  • McQuay EL, Torres ME, Collier RW, Huh C, McManus J (2008) Contribution of cold seep barite to the barium geochemical budget of a marginal basin. Deep Sea Res 55:801–811

    Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546

    Google Scholar 

  • Moore CJ (1999) Seeps give a peek into plumbing. Am Assoc Pet Geol Expl 99:22–23

    Google Scholar 

  • Moore GF, Bangs NL, Taira A, Kuramoto S, Pangborn E, Tobin HJ (2007) Three‐dimensional splay fault geometry and implications for tsunami generation. Science 318:1128–1131

    Google Scholar 

  • Moore GF, Saffer D, Studer M, Costa Pisani P (2011) Structural restoration of thrusts at the toe of the Nankai Trough accretionary prism off Shikoku Island, Japan: implications for dewatering processes. Geochem Geophys Geosyst 12:Q0AD12. doi:10.1029/2010GC003453

  • Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochem Geophys Geosyst 4:9009. doi:10.1029/2003GC000588

  • Mottl MJ, Wheat CG, Fryer P, Gharib J, Martin JB (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim Cosmochim Acta 68:4915–4933

    Google Scholar 

  • Naudts L, Greinert J, Artemov Y, Staelens P, Poort J, Van Rensbergen P, De Batist M (2006) Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea. Mar Geol 227:177–199

    Google Scholar 

  • Niemann H, Fischer D, Graffe D, Knittel K, Montiel A, Heilmayer O, Nöthen K, Pape T, Kasten S, Bohrmann G, Boetius A, Gutt J (2009) Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences 6:2383–2395

    Google Scholar 

  • Niemann H, Linke P, Knittel K, MacPherson E, Boetius A, Brückmann W, Larvik G, Wallmann K, Schacht U, Omoregie E, Hiltons D, Brown K, Rehder G (2013) Methane-carbon flow into the benthic food web at cold seeps—a case study from the Costa Rica subduction zone. PLoS One 8(10):e74894

    Google Scholar 

  • Nyman SL, Nelson CS, Campbell KA (2010) Miocene tubular concretions in East Coast Basin, New Zealand: analogue for the subsurface plumbing of cold seeps. Mar Geol 272:319

    Google Scholar 

  • Olu-Le Roy K, Sibuet M, Fiala-Médioni A, Gofas S, Salas C, Mariotti A, Foucher JP, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936

    Google Scholar 

  • Olu-Le Roy K, Caprais J, Fifis A, Fabri M, Galeron J, Budzinsky H, Le Menach K, Khripounoff A, Ondreas H, Sibuet M (2007) Cold-seep assemblages on a giant pockmark off West Africa: spatial patterns and environmental control. Mar Ecol 28:115–130

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Google Scholar 

  • Palandri JL, Reed MD (2004) Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68(5):1115–1133

    Google Scholar 

  • Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJEC, Gottschal JC, The Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria. Appl Environ Microbiol 66(3):1126–1132

    Google Scholar 

  • Pape T, Kasten S, Zabel M, Bahr A, Abegg F, Hohnberg H-J, Bohrmann G (2010) Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, northeastern Mediterranean Sea. Geo-Mar Lett 30:187–206

    Google Scholar 

  • Pape T, Bahr A, Klapp SA, Abegg F, Bohrmann G (2011) High-intensity gas seepage causes rafting of shallow gas hydrates in the southeastern Black Sea. Earth Planet Sci Lett 307:35–46

    Google Scholar 

  • Paull CK, Becker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, Golubic S, Hook JE, Sikes E, Curry J (1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226:965–967

    Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302

    Google Scholar 

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, Hoefs J, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Google Scholar 

  • Peckmann J, Thiel V, Reitner J, Taviani M, Aharon P, Michaelis W (2004) A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone. Geomicrobiol J 21:247–255

    Google Scholar 

  • Perez-Garcia C, Feseker T, Mienert J, Berndt C (2009) The Håkon Mosby mud volcano: 330000 years of focused fluid flow activity at the SW Barents Sea slope. Mar Geol 262(1/4):105–115

    Google Scholar 

  • Peterson RN, Burnett WC, Taniguchi M, Chen J, Santos IR, Ishitobi T (2008) Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. J Geophys Res 113. doi:10.1029/2008JC004776

  • Pierre C, Fouquet Y (2007) Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo-Mar Lett 27(2/4):249–257

    Google Scholar 

  • Pierre C, Mascle J, Imbert P (eds) (2014) Contributions from the 11th international conference on gas in marine sediments, Nice 2011. Geo-Mar Lett 34(2/3) (in press)

  • Prokurowski G et al (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319:604–607

    Google Scholar 

  • Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752

    Google Scholar 

  • Ranero CR, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending, faulting, and mantle serpentinization at the Middle America Trench. Nature 425:367–373

    Google Scholar 

  • Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophy Geosys 9(3). doi:10.1029/2007GC001679

  • Rickaby REM, Shaw S, Bennitt G, Kennedy H, Zabel M, Lennie A (2006) Potential of ikaite to record the evolution of oceanic δ18O. Geology 34:497–500

    Google Scholar 

  • Roberts HH, Boland BS (eds) (2010) Topial studies in oceanography: golf of Mexico Cold seeps. Deep Sea Res 57(21/23):1835–2060

  • Rongemaille E, Bayon G, Pierre C, Bollinger C, Chu NC, Fouquet Y, Riboulot V, Voisset M (2011) Rare earth elements in cold seep carbonates from the Niger delta. Chem Geol 286:196–206

    Google Scholar 

  • Rossel PE, Lipp JS, Fredricks HF, Arnds J, Boetius A, Elvert M, Henrichs KU (2008) Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org Geochem 39:992–999

    Google Scholar 

  • Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs K-U (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184

    Google Scholar 

  • Rüpke LH, Phipps-Morgan J, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Google Scholar 

  • Saffer DM (2003) Pore pressure development and progressive dewatering in underthrust sediments at the Costa Rican subduction margin: comparison with Northern Barbados and Nankai. J Geophys Res 108:B5. doi:10.1029/202JB001787

  • Saffer DM, McKiernan AW (2009) Evaluation of in situ smectite dehydration as a pore water freshening mechanism in the Nankai Trough, offshore southwest Japan. Geochim Geophys Geosys 10(2). doi:10.1029/2008GC002226

  • Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin; NE Pacific. Mar Ecol Prog Ser 231:121–138

    Google Scholar 

  • Sahling H, Galkin SV, Salyuk A, Greinert J, Foerstel H, Piepenburg D, Suess E (2003) Depth-related structure and ecological significance of cold-seep communities. A case study from the Sea of Okhotsk. Deep Sea Res 50:1391–1409

    Google Scholar 

  • Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophy Geosys 9(5). doi:10.1029/2008GC001978

  • Sassen R, Roberts HH, Carney R, Milkov A, DeFreitas DA, Lanoil B, Zhang CL (2004) Free hydrocarbon gas, gas hydrate and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial process. Chem Geol 205:195–217

    Google Scholar 

  • Schneider von Deimling J, Rehder G, Greinert J, McGinnnis DF, Boetius A, Linke P (2011) Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont Shelf Res 31:867–878

    Google Scholar 

  • Schnürle P, Liu C-S, Lin A-T, Lin S (2011) Structural controls on the formation of BSR over a diapiric anticline from a dense MCS survey offshore southwestern Taiwan. Mar Petrol Geol 28(10):1932–1942

    Google Scholar 

  • Scholl DV, von Huene R (2007) Crustal recycling at modern subduction zones applied to the past—issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc Am Mem 200:9–32

    Google Scholar 

  • Scholz F, Hensen C, Reitz A, Romer RL, Liebetrau V, Meixner A, Weise SM, Haeckel M (2009) Isotopic evidence (87Sr/86Sr, δ7Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean. Geochim Cosmochim Acta 73:5444–5459

    Google Scholar 

  • Scholz F, Hensen C, de Lange GJ, Haeckel M, Liebetrau V, Meixner A, Reitz A, Romer RL (2010) Lithium isotope geochemistry of marine pore waters—insights from cold seep fluids. Geochim Cosmochim Acta 74:3457–3459

    Google Scholar 

  • Scholz F, Hensen C, Schmidt M, Geersen J (2013) Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins. Geochim Cosmochim Acta 100:200–216

    Google Scholar 

  • Schubert CJ, Nürnberg D, Scheele N, Pauer F, Kriews M (1997) 13C depletion in ikaite crystals: evidence for methane release from the Siberian shelves? Geo-Mar Lett 17:169–175

    Google Scholar 

  • Sellanes J, Quiroga E, Neira C (2008) Megafauna community structure and trophic relationships at the recently discovered Concepcion Methane Seep Area, Chile ~36°S. ICES J Mar Sci Adv. doi:10.1093/icesjms/fsn099

  • Shakirov R, Obzhirov A, Suess E, Salyuk A, Biebow N (2004) Mud volcanoes and gas vents in the Okhotsk Sea area. Geo-Mar Lett 24:140

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res Part II 45:517–567

    Google Scholar 

  • Soeding E, Wallmann K, Suess E, Flueh ER (eds) (2003) Cruise Report M54/2+3: Fluids and subduction Costa Rica 2002. GEOMAR Report 111; 336 pp

  • Sommer S, Linke P, Pfannkuche O, Schleicher T, Schneider von Deimling J, Reitz A, Haeckel M, Flögel S, Hensen C (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Prog Ser 382:69–86

    Google Scholar 

  • Suess E (ed) (2005) RV SONNE 177; South China Sea continental margin: geological methane budget and environmental effects of methane emissions and gas hydrates. IFM-GEOMAR Report 04. doi:10.3289/ifm-geomar_rep_4_2005

  • Suess E (2010) Marine cold seeps. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol. 1, part 3. Springer, Heidelberg, pp 187–203. doi:10.1007/978-3-540-77587-4_12

  • Suess E, Linke P (2006) Der Ozean unter dem Meeresboden—Kalte Quellen als Oasen der Tiefsee. In: Wefer G (ed) Expedition Erde, 2nd edn, pp 88–101

  • Suess E, Balzer W, Hesse KF, Müller PJ, Ungerer CA, Wefer G (1981) CaCO3-hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites. Science 216:1128–1131

    Google Scholar 

  • Suess E, Carson B, Ritger SD, Moore JC, Jones ML, Kulm LD, Cochrane GR (1985) Biological communities at vent sites along the subduction zone off Oregon. Biol Soc Wash Bull 6:475–484

    Google Scholar 

  • Teichert BMA, Eisenhauer A, Bohrmann G, Haase-Schramm A, Bock B, Linke P (2003) U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations. Geochim Cosmochim Acta 67(20):3845–3857

    Google Scholar 

  • Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on Hydrate Ridge—unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeoclimatol Palaeoecol 227:67–85

    Google Scholar 

  • Tinivella U, Lodolo E (2000) The Blake Ridge bottom-simulating reflector transect: tomographic velocity field and theoretical model to estimate methane hydrate quantities. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Results 164:273–281. doi:10.2973/odp.proc.sr.164.237.2000

  • Tong H, Feng D, Cheng H et al (2013) Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Mar Pet Geol 43:260–271

    Google Scholar 

  • Torres ME, Bohrmann G, Suess E (1996) Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone. Earth Planet Sci Lett 144:469–481

    Google Scholar 

  • Torres ME, McManus J, Huh C-A (2002) Fluid seepage along the San Clemente Fault scarp: basin-wide impact on barium cycling. Earth Planet Sci Lett 203:181–194

    Google Scholar 

  • Torres ME, Mix AC, Kinports K, Haley B, Klinkhammer G, McManus J, DeAngelis MA (2003) Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography 18(3). doi:10.1029/2002PA000824

  • Torres ME, Teichert BMA, Trehu AM, Borowski W, Tomaru H (2004) Relationship of pore water freshening to accretionary processes in the Cascadia margin: fluid sources and gas hydrate abundance. Geophys Res Lett 31:L22305. doi:10.1029/2004GL021219

  • Torres ME, Embley RW, Merle SG, Tréhu AM, Collier RW, Suess E, Heeschen KU (2009) Methane sources feeding cold seeps on the shelf and upper continental slope off central Oregon, USA. Geochem Geophys Geosys 10(11):Q11003. doi:10.1029/2009GC002518

  • Treude T (2012) Biogeochemical reactions in marine sediments underlying anoxic water bodies. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for Eucaryote survival and paleontological strategies. Series: cellular origin, life in extreme habitats and astrobiology 21:17–38

  • Treude T, Orphan V, Knittel K et al (2007) Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Microbiol 73:2271–2283

    Google Scholar 

  • Tryon MD, Brown K, Dorman L, Sauter E (2001) A new benthic aqueous flux meter for very low to moderate discharge rates. Deep Sea Res I 48(9):2121–2146

    Google Scholar 

  • Tryon MD, Henry P, Cagatay MN, Zitter TAC, Geli L, Gasperini L, Burnard P, Bourlange S, Grall C (2010) Pore fluid chemistry of the North Anatolian Fault Zone in the Sea of Marmara: a diversity of sources and processes. Geochem Geophys Geosys 11:1–22

    Google Scholar 

  • van Avendonk HJA, Holbrook WS, Lizarralde D, Denyer P (2011) Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem Geophys Geosys 12(6). doi:10.1029/2011GC003592

  • van der Straaten F, Halama R, John T, Schenk V, Hauff F, Andersen N (2012) Tracing the effects of high-pressure metasomatic fluids and seawater alteration in blueschist-facies overprinted eclogites: implications for subduction channel processes. Chem Geol 292–293(2012):69–87

    Google Scholar 

  • Vannucchi P, Fisher DM, Bier S, Gardner TW (2006) From seamount accretion to tectonic erosion: formation of Osa mélange and the effects of Cocos Ridge subduction in southern Costa Rica. Tectonics 25(4):TC2004. doi:10.1029/2005TC001855

  • Wallmann K (2001) The geological water cycle and the evolution of marine δ180 values. Geochim Cosmochim Acta 65:2469–2485

    Google Scholar 

  • Wallmann K, Drews M, Aloisi G, Bohrmann G (2006) Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes. Earth Planet Sci Lett 205:181–194

    Google Scholar 

  • Wallmann K, Aloisi G, Haeckel M, Tishchenko P, Pavlova G, Greinert J, Kutterolf S, Eisenhauer A (2008) Silicate weathering in anoxic marine sediments. Geochim Cosmochim Acta 72:2895–2918

    Google Scholar 

  • Wannamaker TG, Caldwell GR, Jiracek V, Maris GJ, Hill Y, Ogawa H, Bibby M, Bennie L, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 460:733–736

    Google Scholar 

  • Warén A, Bouchet P (2009) New gastropods from deep-sea hydrocarbon seeps off West Africa. Deep Sea Res II 56:2326–2349

    Google Scholar 

  • Watanabe Y, Nakai S, Hiruta A, Matsumoto R, Yoshida K (2008) U-Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea. Earth Planet Sci Lett 272(1–2):89–96

    Google Scholar 

  • Weinrebe W, Flüh ER (eds) (2002) FS/RV SONNE Cruise Report SO163 SUBDUCTION I; GEOMAR Report 106, 531 pp

  • Westbrook GK, MEDRIFF Consortium (1995) Three brine lakes discovered in the seafloor of the Eastern Mediterranean. EOS Trans Am Geophys Union 76:313–318

    Google Scholar 

  • Westbrook GH, Reston TJ (2002) The accretionary complex of the Mediterranean Ridge: tectonics, fluid flow and the formation of brine lakes—an introduction. Mar Geol 186:1–8

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Google Scholar 

  • Whiticar MJ, Suess E (1998) The cold carbonate connection between Mono Lake, California and the Bransfield Strait, Antarctica. Aquatic Geochem 4:429–454

    Google Scholar 

  • Worzewski T, Jegen M, Kopp H, Brasse H, Taylor WT (2010) Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci 4:108–111

    Google Scholar 

  • Yang JY, Chung K-H, Jin Y-K, Shin K-H (2011) Characterizing lipid biomarkers in methanotrophic communities of gas hydrate-bearing sediments in the Sea of Okhotsk. Mar Pet Geol 28(10):1884–1898

    Google Scholar 

  • Zapata-Hernandez G, Sellanes X, Thurber AR, Levin L A, Chazalon F, Linke P (2013) New insights on the trophic ecology of bathyal communities from the methane seep area of Concepcion, Chile (~36° S). Mar Ecol 35:1–21. doi:10.1111/maec.12-51

    Google Scholar 

  • Zhang CL, Lanoil B (eds) (2004) Geomicrobiology and biogeochemistry of gas hydrates and hydrocarbon seeps. Chem Geol 205(3/4):387–486

    Google Scholar 

  • Zitter TAC, Henry P, Aloisi G, Delaygue G, Cagatay MN, Mercier de Lepinay B, Al-Samir M, Fornacciari F, Tesmer M, Pekdeger A, Wallmann K, Lericolais G (2008) Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey). Deep Sea Res I 55:552–570

    Google Scholar 

Download references

Acknowledgments

This article is a much expanded version of a review entitled: Marine cold seeps; Suess (2010) in: Handbook of Hydrocarbon and Lipid Microbiology, edited by Kenneth N. Timmis and published by Springer, Heidelberg. The editor and the publication staff of Springer graciously gave permission to build on this previously published material, including the use of several illustrations. Marc-André Gutscher (Brest), Gerhard Bohrmann (Bremen), Peter Linke and Tina Treude (both Kiel), Florian Scholz and Marta Torres (both Corvallis) provided advice and material, I thank them much for always responding promptly. I wish to thank Gerhard Bohrmann and Klaus Wallmann for thorough reviews that helped better focus this review on the geologic framework of marine cold seeps. I acknowledge the College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, for the Courtesy Appointment extended to me. Zona Suess helped, as always, with the intricacies of the English language and the organization of the references. This publication is Contribution No. 265 of the Sonderforschungsbereich 574 Volatiles and Fluids in Subduction Zones at Kiel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Suess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suess, E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int J Earth Sci (Geol Rundsch) 103, 1889–1916 (2014). https://doi.org/10.1007/s00531-014-1010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1010-0

Keywords

Navigation