Skip to main content
Log in

Centrifuge modelling of deformation of a multi-layered sequence over a ductile substrate: 1. Style and 4D geometry of active cover folds during layer-parallel shortening

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Centrifuge analogue modelling illustrates the progressive development of active folds in multilayers upon a ductile substrate during layer-parallel shortening. Models simulate folding of a mechanically stratified sedimentary sequence upon migmatitic gneisses in a large hot orogen, or upon a thick basal evaporite ± shale sequence in deeper levels of fold belts. The absence of a weak low-viscosity and low-density layer at the interface promotes infolding of the cover sequence and ductile substrate, whereas a planar upper surface to the basal ductile substrate is preserved when it is present. Whilst fold style, wavelength, and deformation of the interface with the ductile substrate differ depending on whether a low-viscosity and low-density layer is present at the base of the cover sequence, there is no marked systematic curvature of fold axes as seen in previous sandbox models for fault-bend or fault propagation folding during bulk shortening. Bulk shortening of a layered sequence with relatively thick individual layers above a ductile substrate promotes a regular and upright train of buckle folds, whereas thinner layers promote a more irregular distribution of buckle folds with variable vergence, style, and amplitude. Buckle folds above a ductile substrate progressively develop during bulk shortening from open and upright, to angular and tight, and may further develop into cuspate structures above relatively weak horizons. Relatively thick weak horizons within the layered sequence during bulk shortening interrupt regular fold patterns up structural section and allow out-of-phase folds to develop above and below the weak horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Where g is the local acceleration due to gravity, i.e., 1g experiments are carried out under normal gravity.

References

  • Affolter T, Gratier J-P (2004) Map view retrodeformation of an arcuate fold-and-thrust belt: The Jura case. J Geophys Res 109:B03404. doi:10.1029/2002JB002270

    Article  Google Scholar 

  • Aspler LB, Chiarenzelli JR, McNicoll VJ (2002) Paleoproterozoic basement-cover infolding and thick-skinned thrusting in Hearne domain, Nunavut, Canada: intracratonic response to Trans-Hudson orogen. Precamb Res 116:331–354

    Article  Google Scholar 

  • Aydemir EO (1998) Investigation of strain related to displacement transfer and along strike variation using 3-D seismic interpretation, physical modelling and computer graphics visualization. MSc Thesis, Queen’s University, Kingston, ISBN:0612281736

  • Bahroudi A, Koyi HA (2003) Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach. J Geol Soc Lond 160:719–733

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res 109:B06406. doi:10.1029/2003JB002809

    Article  Google Scholar 

  • Beaumont C, Nguyen MH, Jamieson RA, Ellis S (2006) Crustal flow modes in large hot orogens. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones, vol 268. Geological Society, London, Special Publications, pp 91–145

  • Biot MA (1961) Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis. Geol Soc Am Bull 72:1595–1620

    Article  Google Scholar 

  • Blay P, Cosgrove JW, Summers JM (1977) An experimental investigation of the development of structures in multilayers under the influence of gravity. J Geol Soc Lond 133:329–342

    Article  Google Scholar 

  • Boutelier D, Schrank C, Cruden A (2008) Power-law viscous materials for analogue experiments: new data on rheology of highly-filled silicone polymers. J Struct Geol 30:341–353

    Article  Google Scholar 

  • Brown RL, Gibson HD (2006) An argument for channel flow in the southern Canadian Cordillera and comparison with Himalayan tectonics. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones, vol 268. Geological Society, London, Special Publications, pp 543–559

  • Bucher WH (1956) Role of gravity in orogenesis. Geol Soc Am Bull 67:1295–1318

    Article  Google Scholar 

  • Buxtorf A (1916) Prognosen und Befunde beim Hauensteinbasis und Grenchenberg tunnel und die Bedeutung der letzteren für die Geologie der Juragebirges. Verh Naturforsch Ges Basel 27:185–254

    Google Scholar 

  • Calassou S (1994) Étude tectonique d’une chaîne de décollement: A) Tectonique Triasique et Tertiaire de la chaîne de Songpan-Garzê. B) Géométrie et cinématique des déformations dans les prismes d’accrétion sédimentaire: modélisation analogique. Thèse de doctorat, Université de Montpellier II, Montpellier, France, 94 MON2 0227

  • Chapple WM (1978) Mechanics of thin-skinned fold-and-thrust belts. Geol Soc Am Bull 89:1189–1198

    Article  Google Scholar 

  • Chen A (1998) Geometric and kinematic evolution of basement-cored structures: intraplate orogenesis within the Yanshan Orogen, northern China. Tectonophysics 292:17–42

    Article  Google Scholar 

  • Colletta B, Letouzey R, Pinedo R, Ballard J-F, Balé P (1991) Computerized X-Ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology 19:1063–1067

    Article  Google Scholar 

  • Corti G (2004) Centrifuge modeling of the influence of crustal fabrics on the development of transfer zones: insights into the mechanics of continental rifting architecture. Tectonophysics 384:191–208

    Article  Google Scholar 

  • Costa E, Vendeville BC (2002) Experimental insights on the geometry and kinematics of fold-and-thrust belts above a weak, viscous evaporite décollement. J Struct Geol 24:1729–1739

    Article  Google Scholar 

  • Cotton J, Koyi H (2000) Modeling of thrust front above ductile and frictional detachments: application to structures in the Salt Range and Potwar Plateau, Pakistan. Geol Soc Am Bull 112:351–363

    Article  Google Scholar 

  • Cruden AR, Nasseri MHB, Pysklywec R (2006) Surface topography and internal strain variation in wide hot orogens from three-dimensional analogue and two-dimensional numerical vice models. In: Buiter SJH, Schreurs G (eds) Analogue and numerical modelling of crustal-scale processes, vol 253. Geol Soc Lond Spec Pub, pp 79–104

  • Culshaw NG, Beaumont C, Jamieson RA (2006) The orogenic superstructure-infrastructure concept: revisited, quantified, and revived. Geology 34:733–736

    Article  Google Scholar 

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88(B2):1153–1172

    Article  Google Scholar 

  • Dennis JG, Häll R (1978) Jura-type platform folds: a centrifuge experiment. Tectonophysics 45:T15–T25

    Article  Google Scholar 

  • Dietl C, Koyi HA (2008) Formation of tabular plutons—results and implications of centrifuge modelling. J Geosci 53:253–261

    Article  Google Scholar 

  • Dixon JM (2004) Physical (centrifuge) modeling of fold-thrust shortening across carbonate bank margins—timing, vergence, and style of deformation. In: McClay KR (ed) Thrust tectonics and hydrocarbon systems, vol 82. AAPG Mem, pp 223–238

  • Dixon JM, Spratt DA (2004) Deformation at lateral ramps and tear faults—centrifuge models and examples from the Canadian Rocky Mountain Foothills. In: McClay KR (ed) Thrust tectonics and hydrocarbon systems, vol 82. AAPG Mem, pp 239–258

  • Dixon JM, Summers JM (1983) Patterns of total and incremental strain in subsiding troughs: experimental centrifuge models of inter-diapir synclines. Can J Earth Sci 20:1843–1861

    Article  Google Scholar 

  • Dixon JM, Summers JM (1985) Recent developments in centrifuge modelling of tectonic processes: equipment, model construction techniques and rheology of model materials. J Struct Geol 7:83–102

    Article  Google Scholar 

  • Dixon JM, Tirrul R (1991) Centrifuge modelling of fold-thrust structures in a tripartite stratigraphic succession. J Struct Geol 13:3–20

    Article  Google Scholar 

  • Duliu OG (1999) Computer axial tomography in geosciences: an overview. Earth Sci Rev 48:265–281

    Article  Google Scholar 

  • Fischer MP, Jackson PB (1999) Stratigraphic controls on deformation patterns in fault-related folds: a detachment fold example from the Sierra Madre Oriental, northeast Mexico. J Struct Geol 21:613–633

    Article  Google Scholar 

  • Forien M, Dietl C (2009) Simultaneously ascending diapirs from different depths and different positions: a centrifuge study. Geotectonic Res 96:39–52

    Article  Google Scholar 

  • Fowler TJ, Winsor CN (1996) Evolution of chevron folds by profile shape changes: comparison between multilayer deformation experiments and folds of the Bendigo-Castlemaine goldfields, Australia. Tectonophysics 258:125–150

    Article  Google Scholar 

  • Fyson WK (1971) Fold attitudes in metamorphic rocks. Am J Sci 270:373–382

    Article  Google Scholar 

  • Ghosh SK, Ramberg H (1968) Buckling experiments on intersecting fold patterns. Tectonophysics 5:89–105

    Article  Google Scholar 

  • Godin L (2003) Structural evolution of the Tethyan sedimentary sequence in the Annapurna area, central Nepal Himalaya. J Asian Earth Sci 22:307–328

    Article  Google Scholar 

  • Godin L, Yakymchuk C, Harris LB (2011) Himalayan hinterland-verging superstructure folds related to foreland-directed infrastructure ductile flow: insights from centrifuge analogue modelling. J Struct Geol 33:329–342

    Article  Google Scholar 

  • Hailemariam H, Mulugeta G (1998) Temperature-dependant rheology of bouncing putties used as rock analogs. Tectonophysics 294:131–141

    Article  Google Scholar 

  • Harris LB, Koyi HA (2003) Centrifuge modelling of folding in high-grade rocks during rifting. J Struct Geol 25:291–305

    Article  Google Scholar 

  • Harris CW, Gibson RG, Simpson C, Eriksson KA (1987) Proterozoic cuspate basement-cover structure, Needle Mountains, Colorado. Geology 15:950–953

    Article  Google Scholar 

  • Harris LB, Koyi HA, Fossen H (2002) Mechanisms for folding of high-grade rocks in extensional tectonic settings. Earth Sci Rev 59:163–210

    Article  Google Scholar 

  • Harris LB, Carlier B, Lessard-Fontaine A, Konstantinovskaya EA, Poulin J, Handschuh A, Johnson EL, Thomas N, Daniel S (2008) Centrifuge simulations of the interaction between folding, faulting and diapirism during regional extension. Back to Exploration—2008 CSPG CSEG CWLS Convention, http://www.geoconvention.org/archives/2008abstracts/190.pdf. Accessed Apr 2010

  • Harrowfield MJ, Wilson CJL (2005) Indosinian deformation of the Songpan Garzê Fold Belt, northeast Tibetan Plateau. J Struct Geol 27:101–117

    Article  Google Scholar 

  • Hatcher RD Jr, Merschat AJ (2006) The Appalachian Inner Piedmont: an exhumed strike-parallel, tectonically forced orogenic channel. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones, vol 268. Geological Society, London, Special Publications, pp 517–541

  • Hill KC, Lucas K, Bradey K (2010) Structural styles in the Papuan Fold Belt, Papua New Guinea: constraints from analogue modelling. Geol Soc Lond Spec Pub 348:33–56

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  Google Scholar 

  • Homza TX, Wallace WK (1995) Geometric and kinematic models for detachment folds with fixed and variable detachment depths. J Struct Geol 17:575–588

    Article  Google Scholar 

  • Hubbert MK (1937) Theory of scaled models as applied to the study of geological structures. Geol Soc Am Bull 48:1459–1520

    Google Scholar 

  • Humble K (ed) (2008) Underworld user manual. http://www.underworldproject.org/documents/UnderworldUserManual.pdf. Accessed 18 Dec 2009

  • Hynes GF, Dixon JM (2005) Geological mapping and analogue modeling of the Liard, Kotaneelee and Tlogotsho ranges, Northwest Territories. Bull Can Petrol Geol 53:67–83

    Article  Google Scholar 

  • Jackson MPA, Talbot CJ, Cornelius RR (1988) Centrifuge modeling of the effects of aggradation and progradation on syndepositional salt structures. Univ Tex Austin Bur Econ Geol Rep Invest 173

  • Jamieson RA, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows. 2: Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res B Solid Earth 109:B06407

    Article  Google Scholar 

  • Johns MK, Mosher S (1996) Physical models of regional fold superposition: the role of competence contrast. J Struct Geol 18:475–492

    Article  Google Scholar 

  • Kaus BJP, Schmalholz SM (2006) 3D Finite amplitude folding: implications for stress evolution during crustal and lithospheric deformation. Geophys Res Lett 33:L14309. doi:10.1029/2006GL026341

    Article  Google Scholar 

  • Ketcham R, Carlson WD (2001) Acquisition, optimization, and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comp Geosci 27:381–400

    Article  Google Scholar 

  • Kisters AFM, Anhaeusser CR (1995) Emplacement features of Archaean TTG plutons along the southern margin of the Barberton greenstone belt, South Africa. Precam Res 75:1–15

    Article  Google Scholar 

  • Konstantinovskaya EA, Harris LB, Poulin J, Ivanov GM (2007) Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling. Tectonophysics 441:1–26. doi:10.1016/j.tecto.2007.06.002

    Article  Google Scholar 

  • Koyi H (1988) Experimental modeling of role of gravity and lateral shortening in Zagros Mountain Belt. AAPG Bull 72:1381–1394

    Google Scholar 

  • Koyi H (1991) Gravity overturns, extension, and basement fault activation. J Petrol Geol 14:117–142

    Article  Google Scholar 

  • Koyi HA, Harris LB (2001) Formation of multiple basins above low angle detachments; a centrifuge-model approach. Energy Explor Exploit 19:365–374

    Article  Google Scholar 

  • Koyi HA, Skelton A (2001) Centrifuge modelling of the evolution of low-angle detachment faults from high-angle normal faults. J Struct Geol 23:1179–1185. doi:10.1016/S0191-8141(00)00185-1

    Article  Google Scholar 

  • Krayenbuhl T, Steck A (2009) Structure and kinematics of the Jungfrau syncline, Faflertal (Valais, Alps), and its regional significance. Swiss J Geosci 102:441–456

    Article  Google Scholar 

  • Latta DK, Anastasio DJ (2007) Multiple scales of mechanical stratification and décollement fold kinematics, Sierra Madre Oriental foreland, northeast Mexico. J Struct Geol 29:1241–1255

    Article  Google Scholar 

  • Luján M, Storti F, Balanyá J-C, Crespo-Blanc A, Rossetti F (2003) Role of décollement material with different rheological properties in the structure of the Aljibe thrust imbricate (Flysch Trough, Gibraltar Arc): an analogue modelling approach. J Struct Geol 25:867–881. doi:10.1016/S0191-8141(02)00087-1

    Article  Google Scholar 

  • Luján M, Storti F, Rossetti F, Crespo-Blanc A (2006) Extrusion vs. accretion at the frictional-viscous décollement transition in experimental thrust wedges: the role of convergence velocity. Terra Nova 18:241–247

    Google Scholar 

  • Macedo J, Marshak S (1999) Controls on the geometry of fold-thrust belt salients. Geol Soc Am Bull 111:1808–1822

    Article  Google Scholar 

  • McClay KR (1976) The rheology of plasticine. Tectonophysics 33:T7–T15

    Article  Google Scholar 

  • McQuarrie N (2004) Crustal scale geometry of the Zagros fold–thrust belt, Iran. J Struct Geol 26:519–535

    Article  Google Scholar 

  • Mecklenburgh J, Rutter EH (2003) On the rheology of partially molten synthetic granite. J Struct Geol 25:1575–1585

    Article  Google Scholar 

  • Mees F, Swennen R, Van Geet M, Jacobs P (2003) Applications of X-ray computed tomography in the geosciences. Geol Soc London Spec Pub 215:1–6

    Article  Google Scholar 

  • Mitra S (1990) Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bull 74:921–945

    Google Scholar 

  • Mitra S (2003) A unified kinematic model for the evolution of detachment folds. J Struct Geol 25:1659–1673

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2009) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. Int J Earth Sci 1437–3254. doi:10.1007/s00531-009-0459-8

  • Murphy DC (1987) Suprastructure/infrastructure transition, east-central Cariboo Mountains, British Columbia: geometry, kinematics and tectonic implications. J Struct Geol 9:13–29

    Article  Google Scholar 

  • Nilforoushan F, Koyi HA (2007) Displacement fields and finite strains in a sandbox model simulating a fold-thrust-belt. Geophys J Int 169:1341–1355

    Article  Google Scholar 

  • O’Neill C, Moresi L, Müller D, Albert R, Dufour F (2006) Ellipsis 3D: a particle-in-cell finite-element hybrid code for modelling mantle convection and lithospheric deformation. Comp Geosci 32:1769–1779

    Article  Google Scholar 

  • Pfaff VJ, Johnson AM (1989) Opposite senses of fold asymmetry. Eng Geol 27:3–38

    Article  Google Scholar 

  • Poulin J (2006) De la médecine à la géologie—visualisation des modèles physiques par tomodensitométrie. M.Sc. Thesis, INRS-ETE, Québec, http://ete.inrs.ca/pub/theses/T000478.pdf and http://ete.inrs.ca/pub/theses/T000478.zip. Accessed Sept 2010

  • Ramberg H (1967a) Model experimentation of the effect of gravity on tectonic processes. Geophys J R Astr Soc 14:307–329

    Article  Google Scholar 

  • Ramberg H (1967b) Gravity, deformation and the earth’s crust as studied by centrifuged models, 1st edn. Academic Press, London

    Google Scholar 

  • Ramberg H (1973) Model studies of gravity-controlled tectonics by the centrifuge technique. In: de Jong KA, Scholten R (eds) Gravity tectonics. Wiley, New York, pp 49–66

    Google Scholar 

  • Ramberg H (1981) Gravity, deformation and the earth’s crust in theory, experiments, and geological application, 2nd edn. Academic Press, London

    Google Scholar 

  • Ramsay JG (1967) Folding and fracturing of rocks. McGraw Hill, NewYork

    Google Scholar 

  • Roger F, Malavielle J, Leloup PH, Calassou S, Xu Z (2004) Timing of granite emplacement and cooling in the Songpan Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. J Asian Earth Sci 22:465–481

    Article  Google Scholar 

  • Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 223:19–28

    Article  Google Scholar 

  • Ross JV, Fillipone J, Montgomery JR, Elsby DC, Bloodgood M (1985) Geometry of a convergent zone, central British Columbia, Canada. Tectonophysics 119:285–297

    Article  Google Scholar 

  • Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216

    Article  Google Scholar 

  • Rushmer T (2001) Volume change during partial melting reactions: implications for melt extraction, melt geochemistry and crustal rheology. Tectonophysics 342:389–405

    Article  Google Scholar 

  • Sans M (2003) From thrust tectonics to diapirism. The role of evaporites in the kinematic evolution of the eastern South Pyrenean front. Geol Acta 1:239–259

    Google Scholar 

  • Sans M, Koyi HA (2001) Modeling the role of erosion in diapir development in contractional settings. GSA Mem 193:111–122

    Google Scholar 

  • Scharer KM, Burbank DW, Chen J, Weldon RJ, Rubin C, Zhao R, Shen J (2004) Detachment folding in the Southwestern Tian Shan-Tarim foreland, China: shortening estimates and rates. J Struct Geol 26:2119–2137

    Article  Google Scholar 

  • Schreurs G, Hanni R, Vock P (2002) Analogue modelling of transfer zones in fold and thrust belts: a 4-D analysis. In: Schellart WP, Passchier C (eds) Analogue modelling of large-scale tectonic processes. J Virtual Explor 6:43–49

  • Searle MP, Parrish RR, Hodges KV, Hurford A, Ayres MW, Whitehouse MJ (1997) Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol 105:295–317

    Article  Google Scholar 

  • Searle MP, Simpson RL, Law RD, Parrish RR, Waters DJ (2003) The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. J Geol Soc Lond 160:345–366

    Article  Google Scholar 

  • Simpson GDH (2009) Mechanical modelling of folding versus faulting in brittle-ductile wedges. J Struct Geol 31:369–381

    Article  Google Scholar 

  • Smith RB (1977) Formation of folds, boudinage, and mullions in non-Newtonian materials. Geol Soc Am Bull 88:312–320

    Article  Google Scholar 

  • Smith RB (1979) The folding of a strongly non-Newtonian layer. Am J Sci 279:272–287

    Article  Google Scholar 

  • Sofuoglu H, Rasty J (2000) Flow behavior of Plasticine used in physical modeling of metal forming processes. Tribology Int 33:523–529

    Article  Google Scholar 

  • Sokoutis D (1987) Finite strain effects in experimental mullions. J Struct Geol 9:233–242

    Google Scholar 

  • Sokoutis D, Burg J-P, Bonini M, Corti G, Cloetingh S (2005) Lithospheric-scale structures from the perspective of analogue continental collision. Tectonophysics 406:1–15

    Article  Google Scholar 

  • Stockmal GS, Beaumont C, Nguyen M, Lee B (2007) Mechanics of thin-skinned fold-and-thrust belts: insights from numerical models. In: Sears JW, Harms TA, Evenchick CA (eds) Whence the Mountains? Inquiries into the evolution of orogenic systems: a volume in honor of Raymond A. Price. Geol Soc Am Special Paper 433:63–98

  • Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:684–721

    Article  Google Scholar 

  • Suppe J, Connors C, Zhang Y (2004) Shear fault-bend folding. In: McClay K (ed) Thrust Tectonics and hydrocarbon systems. AAPG Mem 82:303–323

  • Sussman AJ, Butler RF, Jaume Dinarès-Turell J, Vergés J (2004) Vertical-axis rotation of a foreland fold and implications for orogenic curvature: an example from the Southern Pyrenees, Spain. Earth Planet Sci Lett 218:435–449

    Article  Google Scholar 

  • ten Grotenhuis SM, Piazolo S, Pakula T, Passchier CW, Bons PD (2002) Are polymers suitable rock analogs? Tectonophysics 350:35–47

    Article  Google Scholar 

  • Turrini C, Ravaglia A, Perotti CR (2001) Compressional structures in a multilayered mechanical stratigraphy: Insights from sandbox modeling with three-dimensional variations in basal geometry and friction. GSA Mem 193:153–178

    Google Scholar 

  • Urai JL, Spaeth G, van der Zee W, Hilger C (2001) Evolution of mullion (boudin) structures in the Variscan of the Ardennes and Eifel. J Virtual Expl 3:1–16

    Google Scholar 

  • Vanderhaeghe O (1999) Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: control of regional deformation. Tectonophysics 321:35–55

    Article  Google Scholar 

  • Vidal-Royo O, Koyi HA, Muñoz JA (2009) Formation of orogen-perpendicular thrusts due to mechanical contrasts in the basal décollement in the Central External Sierras (Southern Pyrenees, Spain). J Struct Geol 31:523–539

    Article  Google Scholar 

  • Wegmann CE (1935) Zur Deutung der Migmatite. Geol Rundsch 26:205–350

    Article  Google Scholar 

  • Weijermars R (1986) Flow behaviour and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications. Tectonophysics 124:325–358

    Article  Google Scholar 

  • Weijermars R, Schmeling H (1986) Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Phys Earth Planet Int 43:316–330

    Article  Google Scholar 

  • Wilkerson MS, Smaltz SM, Bowman DR, Fischer P, Higuera-Diaz IC (2007) 2-D and 3-D modeling of detachment folds with hinterland inflation: A natural example from the Monterrey Salient, northeastern Mexico. J Struct Geol 29:73–85

    Article  Google Scholar 

  • Williams PF, Jiang D (2005) An investigation of lower crustal deformation: evidence for channel flow and its implications for tectonics and structural studies. J Struct Geol 27:1486–1504

    Article  Google Scholar 

  • Xu Z, Hou L, Wang Z (1992) Orogenic processes of the Songpan–Garzê Orogenic Belt of China. Geological Publishing House, Beijing

    Google Scholar 

  • Zulauf J, Zulauf G (2004) Rheology of plasticine used as rock analogue: the impact of temperature, composition and strain. J Struct Geol 26:725–737

    Article  Google Scholar 

  • Zulauf J, Zulauf G (2005) Coeval folding and boudinage in four dimensions. J Struct Geol 27:1061–1068

    Article  Google Scholar 

  • Zulauf G, Zulauf J, Hastreiter P, Tomandl B (2003) A deformation apparatus for three-dimensional coaxial deformation and its application to rheologically stratified analogue material. J Struct Geol 25:469–480

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for funding CT scanning and centrifuge modelling research at INRS-ETE and to NSERC for Discovery grants to L. Harris and L. Godin. Modelling was undertaken by C. Yakymchuk whilst recipient of an NSERC USRA Summer Research Scholarship. The laboratory for physical, numerical, and geophysical simulations at INRS-ETE was funded by CFI and MELS-Q grants to L. Harris with contributions from INRS-ETE, Applied Geodynamics Laboratory of the Bureau of Economic Geology (University of Texas at Austin, who donated the centrifuge), Sun Microsystems, Seismic Microtechnology, and Norsar. CT scanning was undertaken by L.-F. Daigle in the Quebec Multidisciplinary Scanography Laboratory at INRS-ETE. Effective viscosity measurements were undertaken by J. Poulin and E. Konstantinovskaya; M. Bousmina, Département génie des mines, métallurgie et matériaux, Universté Laval, is thanked for access to his polymer rheology laboratory and M. Rousseau for instruction and assistance in viscosity measurements. S. Cruden is thanked for providing PDMS and B. Giroux for allowing LH workstation access for 3D visualization of CT scans. CY thanks the Battertons for their hospitality for the duration of the modelling program. Careful reviews by C. Dietl and an anonymous reviewer and editorial handling by R. Greiling helped us substantially improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyal B. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakymchuk, C., Harris, L.B. & Godin, L. Centrifuge modelling of deformation of a multi-layered sequence over a ductile substrate: 1. Style and 4D geometry of active cover folds during layer-parallel shortening. Int J Earth Sci (Geol Rundsch) 101, 463–482 (2012). https://doi.org/10.1007/s00531-011-0682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0682-y

Keywords

Navigation