Skip to main content

Advertisement

Log in

Mesozoic to Quaternary continental margin dynamics in South-Central Chile (36–42°S): the apatite and zircon fission track perspective

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Zircon and apatite fission track data provide constraints on the exhumation history, fault activity, and thermal evolution of the South-Central Chilean active continental margin (36°S–42°S), which we use to assess the tectonic and geomorphic response of the margin to the Andean subduction regime. Several domains with different exhumation histories are identified. The Coastal Cordillera is characterized by uniform and coherent exhumation between Late Triassic (∼200 Ma) and late Miocene times, with surprisingly slow average rates of 0.03–0.04 mm/a. Thermal anomalies, related to Late Cretaceous and early Miocene magmatism, have regionally modified fission track age patterns. The Upper Cretaceous thermal overprint is of previously unrecognized significance and extent in the Coastal Cordillera south of 39°S. With the exception of a local but distinct Pliocene to Recent exhumation period in the high-relief Cordillera Nahuelbuta segment between 37°S and 38°S, Cenozoic overall exhumation in the Coastal Cordillera was very slow. The sedimentary record shows that uplift and subsidence here was episodic, with low amplitudes and durations. This rules out large-scale, long-term, Cenozoic accretion, trench-parallel tilting, and tectonic erosion processes in the forearc. The Main Andean Cordillera shows markedly greater long-term exhumation rates than the Coastal Cordillera and, at ∼39°S, a steep exhumation gradient. To the south, long-term average Pliocene to Recent exhumation rates of ∼1 to ∼2 mm/a in the Liquiñe area (39°45′S) are almost an order of magnitude more rapid than average Paleogene to Recent exhumation near Lonquimay (38°30′S) and farther north. While no imprint of the intra-arc Liquiñe-Ofqui Fault Zone on the exhumation pattern is evident, long-term exhumation rates decrease from the crest of the Andes toward the western foothills. Exhumation gradients correlate with climatic gradients, suggesting a causal link to the variable intensity of late Miocene to Pleistocene glacial erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriasola A (2003) Low temperature thermal history and denudation along the Liquiñe-Ofqui Fault Zone in the Southern Chilean Andes, 41–42°S. Dissertation, Ruhr-Universität Bochum, pp 1–119

  • Adriasola A, Stöckhert B, Hervé F (2002) Low temperature thermochronology and tectonics in the Chiloé region, Southern Chilean Andes (41–43°S; 72–74°W). 5th international symposium on Andean geodynamics, Toulouse 2002, Abstract volume, pp 15–18

  • Adriasola AC, Thomson SN, Brix MR, Hervé F, Stöckhert B (2006) Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41–42°15′S. Int J Earth Sci (Geologische Rundschau) 95:504–528

    Article  Google Scholar 

  • Aguirre Le-Bert L, Hervé F, Godoy E (1972) Distribution of metamorphic facies in Chile—an outline. Krystalinikum 9:7–19

    Google Scholar 

  • Andersen B, Denton GH, Lowell TV (1999) Glacial geomorphologic maps of Llanquihue drift in the area of the southern lake district, Chile. Geogr Ann Ser A (Physical Geography) 81(2):155–166

    Article  Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334

    Article  Google Scholar 

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16:489–503

    Article  Google Scholar 

  • Belmar M, Schmidt STh, Ferreiro Mählmann R, Mullis J, Stern WB, Frey M (2002) Diagenesis to low-grade burial and contact metamorphism in the Triassic-Jurassic of the Vichuquén-Tilicura and Hualañe Gualleco Basins, Coastal Range of Chile. Schweiz Mineral Petrogr Mitt 82(2):375–392

    Google Scholar 

  • Bernet M, Brandon MT, Garver J, Reiners P, Fitzgerald P (2002) Determining the zircon fission track closure temperature. Geol Soc Am 34(5):66 (Abstracts with programs)

    Google Scholar 

  • Bonnet S, Crave A (2003) Landscape response to climate change: insights from experimental modeling and implications for tectonic versus climatic uplift of topography. Geology 31:123–126

    Article  Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009

    Article  Google Scholar 

  • Burbank DW (2002) Rates of erosion and their implications for exhumation. Mineral Mag 66:25–52

    Article  Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe-Ofqui Fault Zone: a long lived intra arc fault system in southern Chile. Tectonophysics 259:55–66

    Article  Google Scholar 

  • Cembrano J, Lavenu A, Reynolds P, Arancibia G, López G, Sanhueza A (2002) Late Cenozoic transpressional ductile deformation north of the Nazca-South America-Antarctica triple junction. Tectonophysics 354:289–314

    Article  Google Scholar 

  • Charrier R (1979) El Triásico en Chile y regiones adyacentes de Argentina: una reconstrucción paleogeografica y paleoclimatica. Comunicaciones, Universidad de Chile, Departamento de Geología, No 26, Santiago de Chile, pp 1–37

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations. A handbook of physical constants, vol 3. American Geophysical Union Reference Shelf, Washington, pp 105–126

  • Collao S, Glodny J, Bascuñán S, Esparza E, Pérez S, Aguilar G (2003) Microtermometría y Cronología en cuarzo de estructuras post-Carbonífero en el basamento metamórfico de Chile Centro-Sur. X. Congreso Geologico Chileno, Concepción 2003, Electronic Abstract volume, p 11

  • Duhart P, McDonough M, Muñoz J, Martin M, Villeneuve M (2001) El Complejo Metamórfico Bahía Mansa en la cordillera de la Costa del centro-sur de Chile (39°30′–42°00′S): geocronología K-Ar, 40Ar/39Ar y U-Pb y implicancias en la evolución del margen sur-occidental de Gondwana. Rev Geol Chile 28:179–208

    Google Scholar 

  • Dumitru TA (1989) Constraints on uplift in the Franciscan subduction complex from apatite fission track analysis. Tectonics 8:197–220

    Article  Google Scholar 

  • Dumitru TA (1993) A new computer-automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21:575–580

    Article  Google Scholar 

  • Emparan C, Suárez M, Muñoz J (1992) Hoja Curacautín, Regiones de la Araucania y del Biobio. Mapa, escala 1:250.000. Carta Geológica de Chile, No. 71, SERNAGEOMIN, Santiago de Chile

  • Fitzgerald PG, Sorkhabi RB, Redfield TF, Stump E (1995) Uplift and denudation of the central Alaska Range; a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res 100:20175–20191

    Article  Google Scholar 

  • Franzese JR, Spalletti LA (2001) Late Triassic-early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. J South Am Earth Sci 14:257–270

    Article  Google Scholar 

  • Galbraith RF (1981) On statistical models for fission track counts. J Mathematical Geol 13:471–478

    Article  Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks Radiat Meas 21:459–470

    Article  Google Scholar 

  • Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Annu Rev Earth Planet Sci 26:519–572

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined track lengths in apatite—a diagnostic tool for thermal history analysis. Contrib Mineral Petrol 94:405–415

    Article  Google Scholar 

  • Glodny J, Lohrmann J, Seifert W, Gräfe K, Echtler H, Figueroa O (2002) Geochronological constraints on material cycling velocities, structural evolution, and exhumation of a paleo-accretionary wedge: the Bahía Mansa Complex, South Central Chile. 5th international symposium on Andean Geodynamics, Toulouse, Abstract volume, pp 259–262

  • Glodny J, Lohrmann J, Echtler H, Gräfe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modeling of the South-Central Chilean forearc. Earth Planet Sci Lett 231:23–39

    Article  Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass flow balance of the South-Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos V, Strecker M, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in earth sciences, vol 1, Springer, Berlin, pp 401–428

  • Gräfe K, Frisch W, Villa IM, Meschede M (2002) Geodynamic evolution of southern Costa Rica related to low-angle subduction of the Cocos Ridge: constraints from thermochronology. Tectonophysics 348:187–204

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Lovering JF (1989) Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser ND, McCulloh TH (eds) Thermal history of Sedimentary Basins: methods and case histories. Springer, New York, pp 181–195

    Google Scholar 

  • Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25:599–646

    Article  Google Scholar 

  • Hervé M (1976) Estudio geológico de la falla Liquiñe-Reloncaví en el área de Liquiñe; antecedentes de un movimiento transcurrente (Provincia de Valdivia). Congreso Geológico Chileno, Santiago, 1, pp B39–B56

  • Hervé F, Thiele R, Parada MA (1976) Observaciones geológicas en el Triásico de Chile central entre las latitudes 35°30′ y 40°00′ sur. Congreso Geológico Chileno, Santiago, 1, pp A297–A313

  • Hervé F, Munizaga F, Parada MA, Brook M, Pankhurst RJ, Snelling NJ, Drake R (1988) Granitoids of the Coast Range of central Chile: geochronology and geologic setting. J South Am Earth Sci 1:185–194

    Article  Google Scholar 

  • Hulton NRJ, Purves RS, McCulloch RD, Sugden DE, Bentley MJ (2002) The last glacial maximum and deglaciation in southern South America. Quatern Sci Rev 21:233–241

    Article  Google Scholar 

  • Hurford AJ (1990) Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S Subcommission on Geochronology. Chem Geol 80:171–178

    Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20:308–324

    Article  Google Scholar 

  • Kamp PJJ (1999) Tracking crustal processes by FT thermochronology in a forearc high (Hikurangi margin, New Zealand) involving Cretaceous subduction termination and mid-Cenozoic subduction initiation. Tectonophysics 307:313–343

    Article  Google Scholar 

  • Kemnitz H, Kramer W, Rosenau M (2005) Jurassic to Tertiary tectonic, volcanic, and sedimentary evolution of the Southern Andean intra-arc zone, Chile (38°S–39°S) a survey. N Jahrbuch Geol Paläontol Abhandlungen 236:19–42

    Google Scholar 

  • Ketcham RA, Donelick RA (2003) AFTSolve, version 1.3.0., program and documentation. Donelick Analytical Inc. & R.A. Ketcham, Austin, TX

  • Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geol Mater Res 2(1)(electronic)

  • Lara L, Moreno H (1998) Geología preliminar area de Liquiñe-Neltume, Región de Los Lagos. Mapa 13, escala 1:100.000. In: SERNAGEOMIN (1998) Estudio Geológico-Económico de la X Región Norte, Informe Registrado IR-98-15, Santiago de Chile

  • Le Roux JP, Elgueta S (2000) Sedimentologic development of a late Oligocene–Miocene forearc embayment, Valdivia Basin Complex, southern Chile. Sediment Geol 130:27–44

    Article  Google Scholar 

  • Lucassen F, Trumbull R, Franz G, Creixell C, Vásquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36–41°S). J South Am Earth Sci 17:103–119

    Article  Google Scholar 

  • Martin MW, Kato TT, Rodriguez C, Godoy E, Duhart P, McDonough M, Campos A (1999) Evolution of the late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38–41°S): constraints for the tectonic setting along the southwestern margin of Gondwana. Tectonics 18:582–605

    Article  Google Scholar 

  • Mas L, Mas G, Bengochea L (2000) Heat flow of Copahue geothermal field, its relation with tectonic scheme. World Geothermal Congress 2000, Proceedings, Kyushu—Tohoku, Japan, Abstract volume, pp 1419–1424

  • Melnick D, Echtler H (2006a) Inversion of forearc basins in south-central Chile caused by rapid glacial age trench fill. Geology 34:709–712

    Article  Google Scholar 

  • Melnick D, Echtler H (2006b) Morphotectonic and geologic digital map compilations of the south-central Andes (36–42°S). In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos V, Strecker M, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in earth sciences, vol 1, Springer, Berlin, pp 565–568

  • Melnick D, Rosenau M, Folguera A, Echtler HP (2006a) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39°S lat). Geological Society of America Special Paper 407:73–95. doi: 10.1130/2006.2407(04)

  • Melnick D, Bookhagen B, Echtler HP, Strecker MR (2006b) Coastal deformation and great subduction earthquakes, Isla Santa María, Chile (37°S), Geol Soc Am Bull 118:1463–1480. doi:10.1130/B25865.1

    Google Scholar 

  • Mercer JH, Sutter JF (1982) Late Miocene-earliest Pliocene glaciation in southern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 38:185–206

    Article  Google Scholar 

  • Moore MA, England PC (2001) On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett 185:265–284

    Article  Google Scholar 

  • Mordojovich C (1981) Sedimentary basins of Chilean Pacific offshore. In: Halbouty MT (ed) Energy resources of the Pacific region. Studies in Geology 12, American Association of Petroleum Geologists, Tulsa, pp 63–82

  • Mpodozis C, Ramos V (1989) The Andes of Chile and Argentina. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific council for energy and mineral resources earth science series, vol 11, Houston, pp 59–90

  • Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27:177–203

    Article  Google Scholar 

  • Nelson ST, Davidson JP, Heizler MT, Kowallis BJ (1999) Tertiary tectonic history of the southern Andes: the subvolcanic sequence to the Tatara-San Pedro volcanic complex, lat 36°S. Geol Soc Am Bull 111:1387–1404

    Article  Google Scholar 

  • New MG, Hulme M, Jones PD (1999) Representing 20th century space-time climate variability. I: development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856

    Article  Google Scholar 

  • New MG, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Pankhurst RJ, Hervé F, Rojas L, Cembrano J (1992) Magmatism and tectonics in continental Chiloé, Chile (42–42°30′S). Tectonophysics 205:283–294

    Article  Google Scholar 

  • Platt JP, England PC (1993) Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Am J Sci 294:307–336

    Google Scholar 

  • Potent S (2003) Kinematik und Dynamik neogener Deformationsprozesse des südzentralchilenischen Subduktionssystems, nördlichste Patagonische Anden (37–40°S). Doctoral thesis, University of Hamburg, pp 1–169

  • Rabassa J, Clapperton CM (1990) Quaternary glaciations of the Southern Andes. Quatern Sci Rev 9:153–174

    Article  Google Scholar 

  • Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89:473–484

    Google Scholar 

  • Rauch K (2005) Cyclicity of Peru-Chile trench sediments between 36° and 38°S: a footprint of paleoclimatic variations? Geophys Res Lett 32:L08302, doi: 10.1029/2004GL022196

  • Rehak K (2005) Morphometrische Analyse eines aktiven Kontinentalrandes—Cordillera de Nahuelbuta (Chile). Arbeitsberichte. Heft 107:1–135. ISSN 0947-0360

    Google Scholar 

  • Reiners P, Brandon M (2006) Using thermochronology to understand orogenic erosion. Ann Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Ring U, Brandon MT, Willett SD, Lister GS (1999) Exhumation processes. In: Ring U, Brandon MT, Lister GS, Willett SD (eds) Exhumation processes: normal faulting, ductile flow and erosion, Geological Society, London, Special Publication 154, pp 1–27

  • Rosenau MR (2004) Tectonics of the Southern Andean Intra-arc Zone (38–42°S). Dissertation, Freie Universität Berlin, http://www.diss.fu-berlin.de/2004/280/index.html, pp 1–154

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics 25:TC4013. doi:10.1029/2005TC001943 (in press)

  • Rothstein DA, Manning CE (2003) Geothermal gradients in continental magmatic arcs: constraints from the eastern Peninsular Ranges batholith, Baja California, México. Geol Soc Am, Special Paper 374:337–354

    Google Scholar 

  • Rutland RWR (1971) Andean orogeny and sea floor spreading. Nature 233:252–255

    Article  Google Scholar 

  • Seifert W, Rosenau M, Echtler H (2005) Crystallization depths of granitoids of South Central Chile estimated by Al-in-hornblende geobarometry: implications for mass transfer processes along the active continental margin. N Jahrbuch Geol Paläontol Abhandlungen 236:115–127

    Google Scholar 

  • Seipold U (1998) Temperature dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics 291:161–171

    Article  Google Scholar 

  • SERNAGEOMIN (2003) Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (CD-ROM, versión 1.0, 2003), Santiago de Chile

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962

    Article  Google Scholar 

  • Spotila JA, Buscher JT, Meigs AJ, Reiners PW (2004) Long-term glacial erosion of active mountain belts: example of the Chugach-St Elias Range, Alaska. Geology 32:501–504

    Article  Google Scholar 

  • Stüwe K, White L, Brown R (1994) The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth Planet Sci Lett 124:63–74

    Article  Google Scholar 

  • Suárez M, Emparan C (1995) The stratigraphy, geochronology and paleophysiography of a Miocene fresh-water interarc basin, southern Chile. J South Am Earth Sci 8:17–31

    Article  Google Scholar 

  • Tagami T, Galbraith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: Van Den Haute P, De Corte F (eds) Advances in fission-track geochronology, Kluwer, Dordrecht, pp 99–112

    Google Scholar 

  • Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42° and 46°S: an appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bull 114:1159–1173

    Google Scholar 

  • Thomson SN, Hervé F (2002) New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42–52°S). Rev Geol Chile 29:151–165

    Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30°S and 40°S—plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos V, Strecker M, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in Earth Sciences, vol 1, Springer, Berlin (in press)

  • Von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J Geophys Res 108, B2, 2079, doi:10.1029/2001JB001569

  • Wagner GA (1979) Correction and interpretation of fission track ages. In: Jäger E, Hunziker J (eds) Lectures in isotope geology. Springer, Berlin, pp 170–177

    Google Scholar 

  • Waite K, Fügenschuh B, Schmidt S, Schmid S (2005) A fission track study on low-grade metamorphism and stratigraphy in the Central Chilean Andes. 19th colloquium on Latin American Geosciences, Potsdam. Terra Nostra, p 137

  • Willett SD (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J Geophys Res 104(B12):28957–28981

    Article  Google Scholar 

  • Willett SD, Fisher D, Fuller C, En-Chao Y, Chia-Yu L (2003) Erosion rates and orogenic wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31:945–948

    Article  Google Scholar 

  • Willner AP, Hervé F, Massonne HJ (2000) Mineral chemistry and pressure–temperature evolution of two contrasting high-pressure-low-temperature belts in the Chonos archipelago, Southern Chile. J Petrol 41:309–330

    Article  Google Scholar 

  • Willner AP, Pawlig S, Massonne HJ, Hervé F (2001) Metamorphic evolution of spessartine quartzites (Coticules) in the high-pressure, low temperature complex at Bahía Mansa, Coastal Cordillera of South-Central Chile. Can Mineral 39:1547–1569

    Article  Google Scholar 

  • Willner AP (2005) Pressure–temperature evolution of a Late Palaeozoic paired metamorphic belt in North–Central Chile (34–35°30′S). J Petrol 46:1805–1833

    Article  Google Scholar 

  • Willner AP, Thomson S, Kröner A, Wartho JA, Wijbrans JR, Hervé F (2005) Time markers for the evolution and exhumation history of a Late Paleozoic paired metamorphic belt in north-central Chile (34–35°30′S). J Petrol, doi:10.1093/petrology/egi036

Download references

Acknowledgments

We thank J. Herwig, G. Arnold, V. Kuntz, and M. Dziggel for their help with sample preparation and figure drawing, E. Sobel for critically reading an earlier version of the manuscript, D. Melnick and W. Seifert for discussion and for promoting fieldwork, and all colleagues from the Concepción geoscience community and the Berlin-Potsdam SFB 267 group who supported this work by various means. Careful and constructive reviews by M. Brix and M. Brandon are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Glodny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glodny, J., Gräfe, K., Echtler, H. et al. Mesozoic to Quaternary continental margin dynamics in South-Central Chile (36–42°S): the apatite and zircon fission track perspective. Int J Earth Sci (Geol Rundsch) 97, 1271–1291 (2008). https://doi.org/10.1007/s00531-007-0203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0203-1

Keywords

Navigation