Skip to main content

Advertisement

Log in

Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history

  • Original paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Eckergneiss Complex (EGC) is a geologically unique medium- to high-grade metamorphic unit within the Rhenohercynian domain of the Mid-European Variscides. A previously, poorly defined conventional lower U–Pb intercept age of about 560 Ma from detrital zircons of metasedimentary rocks has led to speculations about an East Avalonian affinity of the EGC. In order to unravel the provenance and to constrain the age of the sediment protolith, we carried out sensitive high-resolution ion microprobe U–Pb analyses on detrital zircons from five different EGC quartzite occurrences. The obtained age spectrum indicates a SW Baltica provenance of the detritus. Sveconorwegian ages between 0.9–1.2 Ga are particularly well represented by analyses from metamorphic recrystallization/alteration zones penetrating into igneous zircon. Cadomian (Pan-African) ages, which might reflect a metamorphic event, could not be substantiated. Instead, zircons of igneous origin yielded concordant Lower Devonian and Silurian ages of 410±10, 419±10, and 436±6 Ma (1σ), implying that sedimentation of the EG protolith must have taken place after 410±10 Ma. The lower age limit of the EGC metamorphism is constrained by 295 Ma intrusion ages of the adjacent, nonmetamorphosed Harzburg Gabbronorite and Brocken Granite. Sedimentation and metamorphism must thus have taken place between about 410 Ma and 295 Ma. Given that this time span coincides with most of the sedimentation within the virtually nonmetamorphosed (lowest grade) Rhenohercynian in the Harz Mountains, including the direct vicinity of the EGC, along with the high-grade metamorphism, the EGC can hardly be seen as uplifted local basement. A possible candidate for the root region is an easterly, concealed marginal segment of the Rhenohercynian domain of the Variscides, which is tectonically overridden and suppressed by the Mid-German Crystalline Rise during continent collision. However, based on the concept of strike-slip movement of Variscan terranes with different P–T–t histories as a result of postaccretion intraplate deformation, the EGC could also represent a fault-bounded complex with an origin located far east or south east of the present location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Recalculated using the decay constants recommended by Steiger and Jäger (1977)

  2. Note that we have obtained 66 concordant ages, which means that we can state with a 95% certainty that a possible Archean component must be smaller that 8% (see Vermeesch 2004).

  3. See footnote 2.

References

  • Åhäll K-I, Larson Å (2000) Growth-related 1.85–1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1-related, and Gothian events. Geol Fören Förh 122:193–206

    Google Scholar 

  • Abdelsalam MG, Liegeois J-P, Stern RJ (2002) The Saharan metacraton. J Afr Earth Sci 34:119–136

    Google Scholar 

  • Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143

    Google Scholar 

  • Bankwitz P (1995) Die Erdkruste der östlichen Rhenoherzynischen Zone im Umfeld des Harzes. Zentralbl Geol Paläontol Teil I 9(10):1551–1557

    Google Scholar 

  • Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determination of crystalline rocks of the Upper Harz Mountains, Germany. Geol Rundsch 80:669–690

    Google Scholar 

  • Bevier ML, Barr SM, White CE (1990) Late Precambrian U-Pb ages for the Brookville Gneiss, southern New Brunswick. J Geol 98:955–965

    Google Scholar 

  • Bingen B, Nordgulen Ø, Sigmond EMO, Tucker R, Mansfeld J, Högdahl K (2003) Relations between 1.19–1.13 Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S Norway. Precamb Res 124:215–241

    Google Scholar 

  • Black LP, Williams IS, Compston W (1986) Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contrib Mineral Petrol 94:427–437

    Article  CAS  Google Scholar 

  • Boullier AM (1991) The Pan-African Trans-Saharan belt in the Hoggar shield (Algeria, Mali, Niger): a review. In: Dallmeyer RD, Lécorché JP (eds) The West African Orogens and circum-Atlantic correlations. Springer, Berlin, Heidelberg, New York, pp 85–105

    Google Scholar 

  • Bregar M, Bauernhofer A, Pelz K, Kloetzli U, Fritz H, Neumayr P (2002) A late Neoproterozoic magmatic core complex in the Eastern Desert of Egypt: emplacement of granitoids in a wrench-tectonic setting. Precamb Res 118:59–82

    Google Scholar 

  • Cahen L, Snelling NJ, Delhal J, Vail JR, Bonhomme M, Ledent D (1984) The geochronology and evolution of Africa. Clarendon Press, Oxford, pp 1–512

    Google Scholar 

  • Claoué-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar anayses: geochronology, time scales and global stratigraphic correlation. Soc Sed Geol Spec Publ 54:3–21

    Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U-Pb geochronolgy of zircons from the lunar breccia 73217 using a sensitive high-resolution ion microprobe. In: Proceedings XIV lunar planetary science conference. J Geophys Res 89:B525-B534

    Google Scholar 

  • DeLaeter JR, Kennedy AK (1998) A double focussing mass spectrometer for geochronology. Int J Mass Spec Ion Proc 178:43–50

    Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    CAS  Google Scholar 

  • Dickinson WR, Gehrels GE (2003) U–Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications. Sedim Geol 163:29–66

    Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar (2002) Neoproterozoic to Early Cambrian history of an active plate margin of the Teplá Barrandian unit—a correlation of U-Pb isotope-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65

    Article  Google Scholar 

  • Düweke M, Ehrismann W, Krahmer U, Rosenbach O (1976) Magnetische und gravimetrische Messungen im Kontaktbereich Eckergneis-Gabbro des Harzer Brockenplutons. Geol Jhb 6:81–108

    Google Scholar 

  • Ermannsdörfer OH (1909) Der Eckergneis im Harz. Ein Beitrag zur Kenntnis der Kontaktmetamorphose und der Entstehung kristalliner Schiefer. Jb Königl-Preuß Geol Landesanst Bergakad Berlin 30:324–338

    Google Scholar 

  • Fernández-Suárez J, Gutiérrez Alonso G, Jefries TE (2002) The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet Sci Lett 204:75–88

    Article  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of Central Europe. Geol Soc Amer Spec Pap 230:67–90

    Google Scholar 

  • Franke W (2001) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc London Spec Publ 179:35–61

    Google Scholar 

  • Franz L, Schuster AK, Strauss KW (1997) Basement evolution in the Rhenohercynian Segment: Discontinuous exhumation history of the Eckergneis complex (Harz Mountains, Germany). Chem Erde 57:105–135

    Google Scholar 

  • Franzke HJ (2001) Die strukturelle Einbindung des Eckergneises zu seinem variscisch geprägten Umfeld. Braunschweiger Geowiss Arb 24:1–26

    Google Scholar 

  • Friedel CH, Hoth P, Franz G, Stedingk K (1995) Niedriggradige Regionalmetamorphose im Harz. Zbl Geol Paläont Teil 1 (1993), H 9/10:1213–1235

  • Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precamb Res 35:15–52

    Google Scholar 

  • Ganssloser M (1999) Detrital chromian spinels in Rhenohercynian greywackes and sandstones (Givetian–Visean, Variscides, Germany) as indicators of ultramafic source rocks. Geol Mag 136:437–451

    Google Scholar 

  • Gee DG, Sturt BA (1985) The Caledonide orogen—Scandinavia and related areas. Wiley, Chichester, pp 1–1266

    Google Scholar 

  • Geisler T, Pidgeon RT (2001) Significance of radiation damage on the integral SEM cathodoluminescence intensity of zircon: an experimental annealing study. N Jb Miner Monatsh 10:433–445

    Google Scholar 

  • Geisler T, Schleicher H (2000) Composition and U-Th-total Pb model ages of polygenetic zircons from the Vånga granite, south Sweden: an electron microprobe study. Geol Fören Förh 122:227–235

    Google Scholar 

  • Geisler T, Ulonska M, Schleicher H, Pidgeon RT, van Bronswijk W (2001) Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contrib Mineral Petrol 141:53–65

    CAS  Google Scholar 

  • Geisler T, Pidgeon RT, van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154

    Article  CAS  Google Scholar 

  • Geisler T, Trachenko K, Ríos S, Dove M, Salje EKH (2003a) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as nuclear waste form. J Phys Condens Matter 15:L597-L605

    Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003b) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 86:1496–1518

    Google Scholar 

  • Geisler T, Rashwan AA, Rahn M, Poller U, Zwingmann H, Pidgeon RT, Schleicher H (2003c) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Article  CAS  Google Scholar 

  • Geisler T, Seydoux-Guillaume A-M, Wiedenbeck M, Berndt J, Wirth R, Zhang M, Mihailova B, Putnis A, Salje EKH, Schlüter J (2004) Periodic pattern formation in hydrothermally treated, metamict zircon. Amer Mineral 89:1341–1347

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG, Agterberg FP, Bleeker W et al (2004) A geological timescale 2004. Cambridge University Press, Cambridge

    Google Scholar 

  • Grauert B, Wagner ME (1975) Age of granulite-facies metamorphism of the Wilmington Complex, Delaware-Pennsyvania Piedmont. Am J Sci 275:683–691

    Google Scholar 

  • Hallsworth CR, Morton AC, Claoué-Long J, Fanning CM (2000) Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sedim Geol 137:147–185

    Google Scholar 

  • Haverkamp J, van Hoegen J, Kramm U, Walter R (1992) Application of U–Pb systems from detrital zircons for paleographic reconstructions—a case study from the Rhenohercynian. Geo Acta 5:69–82

    Google Scholar 

  • Huckriede H, Ahrendt H, Franke W, Wemmer K, Meischner D (1998) Orogenic processes recorded in Early Carboniferous and Devonian clastic sediments of the Rhenohercynian Zone. Terra Nostra 98(2):77–79

    Google Scholar 

  • Ingle S, Mueller PA, Heatherington AL, Kozuch M (2003) Isotopic evidence for the magmatic and tectonic histories of the Carolina terrane: implications for stratigraphy and terrane affiliation. Tectonophys 371:187–211

    Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator Part 2: Petrologic applications. Can J Earth Sci 4:71–97

    Google Scholar 

  • Karabinos P, Gromet LP (1993) Application of single-grain zircon evaporation analysis to detrital grain studies and age discrimination in igneous suites. Geochim Cosmochim Acta 57:4257–4267

    Article  CAS  Google Scholar 

  • Krohe A (1996) Variscan tectonics of central Europe: postaccretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388

    Article  Google Scholar 

  • Kröner A, Jaecker P, Williams IS (1994) Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: U–Pb and Pb–Pb ages for igneous and metamorphic zircons from northern Sri Lanka. Precamb Res 66:151–181

    Google Scholar 

  • Ludwig KR (1998) Calculation of uncertainties of U–Pb isotope data. Earth Plan Sci Lett 46:212–220

    Google Scholar 

  • Ludwig KR (2001) Users manual for isoplot/Ex Version 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Pubication No. 1a, Berkeley.

  • Mohr K (1978) Geologie und Minerallagerstätten des Harzes. E Schweizerbartsche Verlgasbuchhandlung, Stuttgart, pp 1–387

    Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites SW Norway): constraints for Pb diffusion in zircon. J Metam Geol 20:727–740

    Article  Google Scholar 

  • Morton AC, Claoué-Long JC, Hallsworth CR (2001) Zircon age and heavy mineral constraints on provenance of the North Sea Carboniferous sandstone. Mar Petrol Geol 18:319–337

    Google Scholar 

  • Müller G, Strauss KW (1985) Polymetamorphe Entwicklung des Eckergneis-Komplexes/Harz. N Jb Mineral Abh 152(3):271–291

    Google Scholar 

  • Nironen M (1997) The Svecofennian Orogen: a tectonic model. Precamb Res 86:21–44

    Google Scholar 

  • Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq gneiss complex of southern West Greenland: the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precamb Res 78:1–39

    Google Scholar 

  • Obst K, Hammer J, Katzung G, Korich D (2004) The Mesoproterozoic basement in the southern Baltic Sea: insights from the G 14–1 off-shore borehole. Int J Earth Sci 93:1–12

    Google Scholar 

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rund 86:2–20

    Google Scholar 

  • Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophys 314:17–41

    Article  Google Scholar 

  • Pidgeon RT, Furfaro D, Kennedy AK, Nemchin AA, van Bronswijk W (1994) Calibration of zircon standards for the Curtin SHRIMP II. 8th international conference on geochronology, cosmochronology and isotope geology. US Geological Survey Circular 1107:251

    Google Scholar 

  • Pin C (1991) Central-West Europe: Major stages of development during Precambrian and Paleozoic times. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-Atlantic correlations. Springer, Berlin, Heidelberg, New york, pp 295–306

    Google Scholar 

  • Press S (1986) Detrital spinels from alpinotype source rocks in Middle Devonian sediments of the Rhenish Massif. Geol Rund 75:333–340

    Google Scholar 

  • Reinhardt J, Kleemann U (1994) Extensional unroofing of granulitic lower crust and related low-pressure, high-temperature metamorphism in the Saxonian Granulite Massif, Germany. Tectonophys 238:71–94

    Google Scholar 

  • Robardet M (2003) The Amorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory paleobiographical data. Paleageogr Paleoclimatol Paleoecol 60:283–304

    Google Scholar 

  • Rocci G, Bronner G, Deschamps M (1991) Crystalline basement of the West African craton. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-Atlantic correlations. Springer, Berlin, Heidelberg, New york, pp 31–61

    Google Scholar 

  • Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201

    Article  CAS  Google Scholar 

  • Schoell M, Lenz H, Harre W (1973) Das Alter der Hauptmetamorphose des Eckergneises im Harz auf Grund von Rb/Sr-Datierungen. Geol Jb A9:89–95

    Google Scholar 

  • Söderlund U, Jarl L-G, Persson P-O, Stephens MB, Wahlgren C-H (1999) Protolith ages and timing of deformation in the eastern, marginal part of the Sveconorwegian orogen, southwestern Sweden. Precamb Res 94:29–48

    Google Scholar 

  • Söderlund U, Möller C, Andersson J, Johansson L, Whitehouse M (2002) Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: ion microprobe evidence for 1.46–1.42 and 0.98–0.96 Ga reworking. Precamb Res 113:193–225

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommision on Geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–362

    Article  CAS  Google Scholar 

  • Strachan RA, Nutman AP, Friderichsen JD (1995) SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. J Geol Soc Lond 152:779–784

    Google Scholar 

  • Tapponier P, Lacassin R, Leloup PH, Schärer U, Dalai Z, Haiwei W, Xiaohan L, Shaocheng J, Liangshen Z, Jiayou Z (1990) The Ailao Shan-Red River metamorphic belt: Tertiary left lateral shear between Sundaland and South China. Nature 343:431–437

    Google Scholar 

  • Tassinari CCG, Macambira MJB (1999) Geochronological provinces in the Amazonian craton. Episodes 22:174–182

    Google Scholar 

  • Tesalina SG, Nimis P, Augé T, Zaykov VV (2003) Origin of chromite in mafic–ultramafic-hosted hydrothermal massive sulfides from the Main Uralian Fault, South Urals, Russia. Lithos 70:39–59

    Google Scholar 

  • Tichomirowa M, Berger H-J, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2000) Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332

    Google Scholar 

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002

    Article  CAS  Google Scholar 

  • Torsvik TH (1998) Palaeozoic palaeogeography: a North Atlantic viewpoint. Geol Fören Förh 120:109–118

    Google Scholar 

  • Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358

    Article  CAS  Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404

    Article  CAS  Google Scholar 

  • Vermeesch P (2004) How many grains are needed for provenance study. Earth Planet Sci 224:441–451

    Article  CAS  Google Scholar 

  • Wachendorf H (1986) Der Harz—Variszischer Bau und geodynamische Entwicklung. Geol Jhb A 91:3–67

    Google Scholar 

  • Wachendorf H, Buchholz P, Zellmer H (1995) Fakten zum Harz-Paläozoikum und ihre geodynamische Interpretation. Nova Acta Leopoldina NF 71 Nr 291:119–150

    Google Scholar 

  • Willner AP, Krohe A, Maresch MV (2000) Interrelated P–T–t–d paths in the Variscan Erzgebirge dome (Saxony, Germany): Constraints on the rapid exhumation of high-pressure rocks from the root zone of a collisional orogen. Int Geol Rev 41:64–85

    Google Scholar 

  • Zeh A, Brätz H, Millar IL, Williams IS (2001) A combined zircon SHRIMP and Sm–Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise: evidence for northern Gondwana and Grenvillian provenance. J Geol Soc London 158:983–994

    Google Scholar 

  • Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584

    Article  Google Scholar 

Download references

Acknowledegments

Dr. W. Wegener (Nationalpark Hochharz) and K. Surkau (Nationalpark Harz) are kindly acknowledged for permitting us to take rock samples from the EGC area. J. Richards, B. Stütze, and E. Thun are thanked for mineral separation. We would also like to thank J. Schlüter for leaving samples at our disposal and for many fruitful discussions. Critical comments on an earlier draft of the manuscript by A. Krohe and very constructive reviews of G. Zulauf and an anonymous reviewer are appreciated. We are also grateful to the Deutsche Forschungsgemeinschaft (project VI 88/2-1 to RV and TG) and the Deutsche Akademische Austauschdienst (scholarship no. A/99/07919 to NMG) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Geisler.

Appendix

Appendix

SHRIMP data of detrital zircon grains from five quartzite samples of the EGC

Spot

U (ppm)

Th (ppm)

Pb (ppm)

204Pb/206Pb

207Pb/206Pb

±1σ

208Pb/232Th

±1σ

207Pb/235U

±1σ

206Pb/238U

±1σ

206Pb/238U age (Ma)

±1σ

207Pb/235U age (Ma)

±1σ

207Pb/206Pb age (Ma)

±1σ

208Pb/232Th age (Ma)

±1σ

Best age estimatea (Ma)

±1σ

Sample 99-38

 Z1-1

128

86

46

0.00011

0.1057

0.0009

0.0904

0.0017

4.691

0.087

0.3220

0.0050

1,799

24

1,766

16

1726

16

1,750

32

1,745

14

 Z1-2

166

62

62

0.00017

0.1083

0.0009

0.1031

0.0022

5.322

0.096

0.3563

0.0054

1,964

26

1,872

15

1,772

14

1,983

40

 Z12-1

825

43

71

0.00058

0.0618

0.0014

0.0324

0.0052

0.758

0.032

0.0889

0.0030

549

18

573

19

668

47

644

101

961

55

 Z12-2

1017

86

118

0.00079

0.0675

0.0012

0.0266

0.0038

1.105

0.044

0.1188

0.0040

723

23

756

21

853

38

530

75

 Z12-3

1,196

339

135

0.00109

0.0637

0.0014

0.0317

0.0016

0.944

0.040

0.1075

0.0036

658

21

675

21

732

47

631

31

 Z14-1

202

78

31

0.00192

0.0696

0.0039

0.0394

0.0034

1.298

0.090

0.1353

0.0046

818

26

845

40

916

116

780

67

 Z15-1

103

85

11

0.00022

0.0591

0.0027

0.0285

0.0009

0.740

0.038

0.0908

0.0015

560

9

563

22

571

100

568

17

566

6

 Z15-2

216

153

22

0.00014

0.0584

0.0013

0.0288

0.0006

0.746

0.021

0.0926

0.0014

571

8

566

12

545

48

574

12

 Z16-1

92

62

19

0.00013

0.0894

0.0017

0.0568

0.0014

2.294

0.060

0.1861

0.0030

1,100

16

1,210

19

1,413

36

1,117

27

 Z18-1

652

256

188

0.00028

0.0988

0.0008

0.0724

0.0027

3.732

0.132

0.2739

0.0091

1560

46

1,578

28

1,602

15

1,413

50

1,599

14

 Z18-2

350

156

91

0.00031

0.0983

0.0011

0.0695

0.0027

3.296

0.121

0.2432

0.0082

1,403

42

1,480

29

1,592

21

1,358

51

 Z20-1

204

122

61

0.00117

0.0954

0.0023

0.0683

0.0032

3.408

0.149

0.2590

0.0088

1,485

45

1,506

34

1,536

45

1,335

61

1,511

34

 Z2-1

728

268

132

0.00006

0.0755

0.0004

0.0519

0.0009

1.857

0.031

0.1784

0.0026

1,058

14

1,066

11

1,081

11

1,022

17

1,073

10

 Z21-1

195

122

16

0.00236

0.0563

0.0063

0.0204

0.0018

0.527

0.064

0.0680

0.0024

424

14

430

42

463

249

409

35

419

10

 Z21-2

192

120

15

0.00063

0.0616

0.0042

0.0223

0.0013

0.567

0.046

0.0668

0.0023

417

14

456

30

660

148

446

26

 Z25-1

1,079

1,038

270

0.00000

0.0829

0.0002

0.0628

0.0009

2.428

0.037

0.2124

0.0031

1,242

17

1,251

11

1,267

6

1,230

18

1,267

6

 Z26-1

248

170

21

0.00354

0.0439

0.0066

0.0179

0.0016

0.391

0.062

0.0646

0.0023

404

14

335

45

0

28

360

31

410

10

 Z26-2

242

164

19

0.00182

0.0465

0.0051

0.0185

0.0014

0.428

0.051

0.0667

0.0023

416

14

362

36

37

234

371

27

 Z28-1

109

84

35

0.00050

0.1093

0.0028

0.0815

0.0037

4.051

0.185

0.2687

0.0094

1,534

48

1,644

37

1,788

46

1,584

69

 Z29-1

204

143

53

0.00115

0.0859

0.0025

0.0632

0.0029

2.646

0.126

0.2233

0.0076

1,299

40

1,314

35

1,337

57

1,238

55

1,311

35

 Z30-1

395

210

127

0.00036

0.0996

0.0009

0.0856

0.0031

4.025

0.144

0.2931

0.0098

1,657

49

1,639

29

1,616

17

1,661

58

1,620

17

 Z31-1

274

155

76

0.00075

0.0918

0.0016

0.0664

0.0028

3.126

0.125

0.2471

0.0083

1,423

43

1,439

31

1462

33

1,299

52

1,448

28

 Z32-1

24

19

7

0.00761

0.0943

0.0227

0.0631

0.0113

2.088

0.525

0.1607

0.0077

961

42

1,145

174

1,513

469

1,236

214

956

42

 Z34-1

1,195

430

127

0.00054

0.0691

0.0012

0.0309

0.0013

0.966

0.038

0.1014

0.0034

623

20

686

20

902

35

616

25

 Z34-2

1,076

373

164

0.00025

0.0725

0.0008

0.0455

0.0017

1.484

0.054

0.1485

0.0049

892

28

924

22

1,000

23

898

33

 Z35-1

113

66

24

0.00261

0.0728

0.0052

0.0502

0.0040

1.713

0.143

0.1708

0.0060

1,016

33

1,014

54

1,007

146

991

77

1,016

33

 Z36-1

160

139

34

0.00347

0.0678

0.0065

0.0428

0.0031

1.481

0.156

0.1583

0.0055

947

31

923

64

863

198

847

61

947

31

 Z37-1

350

143

102

0.00001

0.1048

0.0006

0.0880

0.0031

3.946

0.137

0.2731

0.0091

1556

46

1,623

28

1,711

11

1,704

57

 Z38-1

31

32

12

0.01463

0.0469

0.0295

0.0445

0.0117

1.116

0.711

0.1726

0.0085

1,027

47

761

355

49

1,055

879

226

1,028

47

 Z39-1

430

96

101

0.00097

0.0878

0.0014

0.0659

0.0039

2.710

0.106

0.2238

0.0075

1,302

39

1,331

29

1,379

32

1,289

73

1,350

26

 Z40-1

236

64

66

0.00125

0.0836

0.0022

0.0787

0.0053

2.972

0.134

0.2580

0.0087

1,480

45

1,401

34

1,282

51

1,530

100

1,391

35

 Z4-1

363

213

103

0.00061

0.0933

0.0012

0.0708

0.0027

3.258

0.122

0.2532

0.0085

1,455

44

1,471

29

1,494

25

1,382

51

1,486

23

 Z41-1

216

111

58

0.00169

0.0889

0.0027

0.0623

0.0035

2.862

0.139

0.2336

0.0079

1,353

41

1,372

36

1,402

59

1,222

67

1,368

36

 Z42-1

163

75

37

0.00149

0.0749

0.0032

0.0588

0.0038

2.089

0.120

0.2023

0.0069

1,188

37

1,145

40

1,066

85

1,154

72

1,169

35

 Z43-1

160

89

52

0.00131

0.1080

0.0030

0.0839

0.0045

4.142

0.194

0.2782

0.0095

1,582

48

1,663

38

1,766

51

1,629

84

1,661

38

 Z45-1

605

103

165

0.00032

0.0988

0.0008

0.0482

0.0029

3.759

0.132

0.2761

0.0092

1,572

46

1,584

28

1,601

15

951

56

1,599

14

 Z5-1

346

125

70

0.00003

0.0782

0.0005

0.0609

0.0011

2.121

0.037

0.1966

0.0030

1,157

16

1,156

12

1,153

14

1,195

21

1,155

11

 Z6-1

19

38

5

0.00107

0.0663

0.0105

0.0527

0.0029

1.650

0.270

0.1805

0.0046

1,070

25

989

104

816

336

1,038

56

1,070

25

 Z8-1

471

299

110

0.00052

0.0800

0.0012

0.0615

0.0023

2.292

0.088

0.2078

0.0069

1,217

37

1,210

27

1,197

30

1,206

43

1,205

25

Sample 0-40

 Z10-1

1,276

417

225

0.00002

0.0743

0.0002

0.0531

0.0008

1.786

0.028

0.1743

0.0026

1,036

14

1,040

10

1,050

7

1,046

16

1,048

6

 Z1-1

213

89

39

0.00018

0.0694

0.0009

0.0497

0.0011

1.684

0.035

0.1759

0.0027

1,045

15

1,002

13

911

26

979

22

1,045

15

 Z11-1

160

93

34

0.00642

0.0727

0.0051

0.0147

0.0031

1.525

0.114

0.1520

0.0025

912

14

940

46

1,007

144

295

61

1,089

49 b

 Z11-2

3,477

371

377

0.00062

0.0758

0.0004

0.0271

0.0009

1.153

0.018

0.1103

0.0016

675

9

779

9

1,089

10

541

18

 Z14-1

876

204

162

0.00014

0.0789

0.0004

0.0561

0.0010

2.014

0.032

0.1852

0.0027

1,095

15

1,120

11

1,169

9

1,104

19

 Z15-1

119

85

27

0.00002

0.0803

0.0011

0.0628

0.0013

2.253

0.050

0.2036

0.0032

1,195

17

1,198

16

1,203

27

1,231

24

1,197

15

 Z17-1

103

21

15

0.00449

0.0765

0.0085

0.0508

0.0105

1.181

0.143

0.1119

0.0041

684

24

792

67

1,108

224

1,001

202

 Z18-1

681

145

115

0.00089

0.0761

0.0012

0.0476

0.0026

1.714

0.066

0.1634

0.0055

976

30

1,014

25

1,097

32

939

50

1,031

24

 Z19-1

535

121

88

-0.00004

0.0854

0.0006

0.0625

0.0022

1.927

0.068

0.1636

0.0055

977

31

1,090

24

1,324

13

1,225

43

 Z2-1

166

24

31

0.00011

0.0809

0.0009

0.0496

0.0024

2.125

0.042

0.1906

0.0029

1,125

16

1,157

14

1,218

21

978

47

 Z3-1

73

42

21

0.00022

0.0923

0.0015

0.0789

0.0021

3.299

0.080

0.2593

0.0042

1,486

22

1,481

19

1,473

31

1,536

39

1,482

19

 Z4-1

402

95

113

0.00129

0.0909

0.0017

0.0776

0.0049

3.281

0.132

0.2618

0.0088

1,499

45

1,476

31

1,444

35

1,510

91

1,464

31

 Z7-1

42

17

13

0.00006

0.0989

0.0020

0.0853

0.0034

3.841

0.107

0.2816

0.0049

1,600

25

1,601

22

1,604

37

1,654

63

1,601

22

 Z8-1

384

21

94

0.00004

0.0912

0.0005

0.0657

0.0040

3.219

0.053

0.2562

0.0038

1,470

20

1,462

13

1,450

10

1,286

76

1,454

10

 Z9-1

61

22

11

0.00019

0.0697

0.0029

0.0516

0.0034

1.701

0.080

0.1769

0.0030

1,050

16

1,009

30

920

86

1,017

65

1,047

16

Sample 0-12

 Z1-1

131

50

27

0.00008

0.0756

0.0012

0.0615

0.0017

2.100

0.049

0.2015

0.0032

1,184

17

1,149

16

1,084

31

1,207

33

1,162

15

 Z2-1

312

235

25

0.00034

0.0507

0.0015

0.0220

0.0005

0.489

0.017

0.0700

0.0011

436

7

404

12

227

68

441

10

436

5

 Z2-2

449

290

34

0.00002

0.0555

0.0010

0.0222

0.0004

0.535

0.013

0.0700

0.0011

436

6

435

9

431

40

444

9

 Z3-1

69

29

14

0.00031

0.0731

0.0023

0.0561

0.0026

1.961

0.072

0.1945

0.0032

1,146

17

1,102

25

1,017

62

1,104

50

1,138

17

 Z4-1

27

14

6

0.00048

0.0771

0.0047

0.0611

0.0045

2.263

0.150

0.2129

0.0043

1,244

23

1,201

47

1,124

121

1,199

86

1,242

22

 Z4-2

140

75

36

0.00009

0.0852

0.0010

0.0716

0.0015

2.835

0.057

0.2414

0.0037

1,394

19

1,365

15

1,320

22

1,398

29

1,361

15

Sample 0-100

 Z14-1

314

143

51

0.00018

0.0720

0.0009

0.0500

0.0010

1.515

0.031

0.1526

0.0023

915

13

937

13

987

25

986

20

 Z14-2

70

23

21

0.00011

0.0964

0.0017

0.0858

0.0034

3.892

0.099

0.2928

0.0048

1,656

24

1,612

21

1,555

33

1,664

64

1,621

20

 Z15-1

297

99

53

0.00007

0.0751

0.0007

0.0534

0.0011

1.824

0.034

0.1761

0.0027

1046

15

1,054

12

1,071

18

1,051

21

1,055

12

 Z2-1

64

72

21

0.00013

0.0909

0.0016

0.0785

0.0017

3.312

0.083

0.2642

0.0043

1,511

22

1,484

20

1,445

33

1,528

31

1,491

19

 Z3-1

137

60

39

0.00149

0.0927

0.0031

0.0703

0.0047

3.212

0.164

0.2512

0.0086

1,445

44

1,460

39

1,483

64

1,374

89

1,456

39

 Z4-1

387

147

107

0.00083

0.0928

0.0016

0.0719

0.0033

3.278

0.129

0.2561

0.0086

1,470

44

1,476

31

1,484

32

1,404

63

1,480

27

 Z7-1

99

36

20

0.00272

0.0786

0.0056

0.0536

0.0062

1.843

0.155

0.1701

0.0060

1,013

33

1,061

55

1,162

142

1,056

120

1,015

33

 Z8-1

178

35

43

0.00103

0.0862

0.0024

0.0567

0.0065

2.752

0.129

0.2314

0.0079

1,342

41

1,343

35

1,344

54

1,114

125

1,343

35

Sample 99-20

 Z1-1

215

86

66

0.00007

0.1007

0.0007

0.0855

0.0017

4.023

0.071

0.2896

0.0044

1,640

22

1,639

14

1,638

13

1,658

31

1,638

12

 Z1-2

244

121

79

0.00007

0.1012

0.0005

0.0886

0.0015

4.159

0.069

0.2981

0.0045

1,682

22

1,666

14

1,646

10

1,716

28

1,651

10

 Z13-1

124

49

25

0.00136

0.0785

0.0036

0.0518

0.0042

1.979

0.121

0.1829

0.0063

1,083

35

1,108

41

1,159

92

1,021

80

1,088

34

 Z14-1

462

141

85

0.00005

0.0791

0.0004

0.0541

0.0010

1.995

0.033

0.1829

0.0027

1,083

15

1,114

11

1,175

11

1,065

19

 Z14-2

445

111

79

0.00002

0.0779

0.0005

0.0584

0.0011

1.912

0.032

0.1780

0.0027

1,056

15

1,085

11

1,144

13

1,147

22

 Z16-1

29

20

8

0.00870

0.0651

0.0195

0.0391

0.0109

1.480

0.455

0.1650

0.0071

985

39

922

188

777

528

776

213

985

39

 Z17-1

115

87

25

0.00265

0.0708

0.0050

0.0474

0.0031

1.662

0.137

0.1703

0.0060

1,014

33

994

52

951

145

935

60

1,012

33

 Z18-1

1,380

415

205

0.00019

0.0825

0.0006

0.0456

0.0016

1.654

0.058

0.1455

0.0048

876

27

991

22

1,256

14

901

31

 Z2-1

85

48

17

0.00303

0.0451

0.0084

0.0299

0.0058

1.034

0.200

0.1663

0.0061

992

34

721

100

0

41

595

113

977

34

 Z21-1

191

46

42

0.00097

0.0874

0.0024

0.0737

0.0050

2.461

0.114

0.2042

0.0069

1,198

37

1,261

33

1,369

52

1,438

95

1,243

33

 Z22-1

66

34

18

0.00335

0.0649

0.0080

0.0586

0.0082

1.974

0.261

0.2207

0.0080

1,286

42

1,107

89

770

261

1151

156

1,268

42

 Z23-1

263

300

91

0.00068

0.1000

0.0014

0.0757

0.0027

3.815

0.146

0.2768

0.0094

1,575

47

1,596

31

1,623

26

1,474

51

1,614

24

 Z26-1

45

4

10

0.00803

0.0578

0.0197

1.235

0.431

0.1551

0.0066

929

37

817

198

521

612

320

930

37

 Z28-1

1182

630

271

0.00032

0.0829

0.0006

0.0656

0.0022

2.395

0.083

0.2096

0.0070

1227

37

1,241

25

1,266

13

1,284

43

1,263

12

 Z29-1

111

62

29

0.00120

0.0908

0.0036

0.0706

0.0041

2.762

0.155

0.2205

0.0077

1,285

40

1,345

42

1,443

76

1,378

77

 Z30-1

157

116

26

0.00059

0.0667

0.0027

0.0405

0.0019

1.362

0.078

0.1481

0.0051

890

29

873

33

830

86

803

38

885

28

 Z31-1

110

68

30

0.00280

0.0900

0.0051

0.0652

0.0047

2.629

0.184

0.2119

0.0075

1,239

40

1,309

52

1,426

108

1,277

89

1,248

39

 Z4-1

150

55

28

0.00120

0.0723

0.0045

0.0509

0.0050

1.682

0.125

0.1688

0.0059

1,005

32

1,002

48

994

126

1,004

97

1,005

32

 Z5-1

120

43

23

0.00164

0.0704

0.0040

0.0490

0.0046

1.645

0.116

0.1694

0.0059

1,009

32

988

44

940

117

966

88

1,005

32

 Z7-1

109

76

22

0.00440

0.0674

0.0088

0.0408

0.0045

1.367

0.191

0.1470

0.0053

884

30

875

82

850

274

809

88

884

30

 Z8-1

147

88

50

0.00219

0.0961

0.0042

0.0666

0.0051

3.743

0.222

0.2824

0.0098

1,603

49

1,581

48

1,551

83

1,302

96

1,590

44

 Z9-1

701

199

155

0.00098

0.0845

0.0013

0.0582

0.0028

2.425

0.093

0.2081

0.0069

1,219

37

1,250

28

1,305

29

1,143

54

1,274

27

  1. The U–Pb ratios were corrected for common lead using 204Pb and Broken Hill lead composition. The significant different errors of individual measurements are the consequence of different analytical conditions during both sessions (see text)
  2. aBold-marked age data were used to construct the probability curves in Figs. 4 and 6. They represent Concordia ages, which were determined according to the method of Ludwig (1998). In those cases, where more than one analysis on a single zircon grain yields discordant ages, the upper intercept age is given (italic font style)
  3. bRegression line was forced through the origin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisler, T., Vinx, R., Martin-Gombojav, N. et al. Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history. Int J Earth Sci (Geol Rundsch) 94, 369–384 (2005). https://doi.org/10.1007/s00531-004-0460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0460-1

Keywords

Navigation