Skip to main content
Log in

Hyperelasticity as a \(\Gamma \)-limit of peridynamics when the horizon goes to zero

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Peridynamics is a nonlocal model in Continuum Mechanics, and in particular Elasticity, introduced by Silling (2000). The nonlocality is reflected in the fact that points at a finite distance exert a force upon each other. If, however, those points are more distant than a characteristic length called horizon, it is customary to assume that they do not interact. We work in the variational approach of time-independent deformations, according to which, their energy is expressed as a double integral that does not involve gradients. We prove that the \(\Gamma \)-limit of this model, as the horizon tends to zero, is the classical model of hyperelasticity. We pay special attention to how the passage from the density of the non-local model to its local counterpart takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aksoylu, B., Mengesha, T.: Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31, 1301–1317 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal diffusion problems, vol. 165 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2010)

  3. Antman, S.S.: Nonlinear problems of elasticity, vol. 107 of Applied Mathematical Sciences. Springer, New York (1995)

  4. Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces, vol. 6 of MPS/SIAM Series on Optimization. SIAM, Philadelphia (2006)

  5. Ball, J.M.: Some recent developments in nonlinear elasticity and its applications to materials science. In: Aston, P. (ed.) Nonlinear mathematics and its applications (Guildford, 1995), pp. 93–119. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

  6. Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, mechanics, and dynamics, pp. 3–59. Springer, New York (2002)

  7. Bellido, J.C., Mora-Corral, C.: Existence for nonlocal variational problems in peridynamics. SIAM J. Math. Anal. 46, 890–916 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi J.L., Rofman E., Sulem A. (eds.) Optimal Control and Partial Differential Equations, pp. 439–455. IOS Press (2001)

  9. Braides, A.: A handbook of \({\Gamma }\)-convergence. In: Chipot M., Quittner P. (eds.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 3, pp. 101–213. North-Holland (2006)

  10. Brezis, H.: Analyse fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  11. Ciarlet, P.G.: Mathematical elasticity. Vol. I, vol. 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1988)

  12. Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46, 102–118 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dacorogna, B.: Direct methods in the calculus of variations. Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York (2008)

  14. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elasticity 113, 193–217 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23, 493–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elbau, P.: Sequential lower semi-continuity of non-local functionals. http://arxiv.org/abs/1104.2686

  17. Emmrich, E., Weckner, O.: On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  19. Fonseca, I., Leoni, G.: Modern methods in the calculus of variations: \(L^p\) spaces. Springer Monographs in Mathematics. Springer, New York (2007)

  20. Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gobbino, M., Mora, M.G.: Finite-difference approximation of free-discontinuity problems. Proc. R. Soc. Edinburgh Sect. A 131, 567–595 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gunzburger, M., Lehoucq, R.B.: A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Model. Simul. 8, 1581–1598 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hinds, B., Radu, P.: Dirichlet’s principle and wellposedness of solutions for a nonlocal \(p\)-Laplacian system. Appl. Math. Comput. 219, 1411–1419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lehoucq, R.B., Silling, S.A.: Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56, 1566–1577 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lipton, R.: Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elasticity 117, 21–50 (2014)

  26. Mengesha, T., Du, Q.: On the variational limit of a class of nonlocal convex functionals (Preprint)

  27. Pedregal, P.: Variational methods in nonlinear elasticity. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

  28. Ponce, A.C.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. 6, 1–15 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ponce, A.C.: A new approach to Sobolev spaces and connections to \(\Gamma \)-convergence. Calc. Var. Partial Differ. Equ. 19, 229–255 (2004)

    Article  MathSciNet  Google Scholar 

  30. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elasticity 88, 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elasticity 93, 13–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. In: Aref H., van der Giessen E. (eds.) Advances in Applied Mechanics, vol. 44 of Advances in Applied Mechanics, pp. 73–168. Elsevier (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Mora-Corral.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellido, J.C., Mora-Corral, C. & Pedregal, P. Hyperelasticity as a \(\Gamma \)-limit of peridynamics when the horizon goes to zero. Calc. Var. 54, 1643–1670 (2015). https://doi.org/10.1007/s00526-015-0839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0839-9

Mathematics Subject Classification

Navigation