Skip to main content
Log in

Biharmonic elliptic problems involving the 2nd Hessian operator

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we will study the equation

$$\begin{aligned} \Delta ^2 u=S_2(D^2u),\quad \Omega \subset \mathbb {R}^N, \end{aligned}$$

with \(N=3,\) where \( S_2(D^2u)(x)=\sum _{1\le i<j\le {N}}\lambda _i(x)\lambda _j(x)\), being \(\lambda _i,\) the solutions to the equation

$$\begin{aligned} \mathrm{det}\left( \lambda I-D^2u(x)\right) =0, \end{aligned}$$

\(i=1,\dots ,N,\) and \(\Omega \) is a bounded domain with smooth boundary. We deal with several boundary conditions looking for the appropriate framework to get existence and multiplicity of nontrivial solutions. This kind of equation is related to some models of growth, and for this reason it is natural to study the effect of zero order local reaction terms of the type \(F_{\lambda }(x,u)=\lambda |u|^{p-1}u\), with \(\lambda \in \mathbb {R}\), \(\lambda >0\), and \(0<p<\infty \), and also the solvability of the boundary problems with a source term \(f\) satisfying some integrability hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems. In: Cambridge Studies in Advanced Mathematics, vol. 104, pp 60–65 (2006)

  4. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)

    Article  MATH  Google Scholar 

  6. Coifman, R., Lions, P.L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Coffman, C.V., Duffin, R.J., Shaffer, D.H.: Constructive Approaches to Mathematical Models, pp. 267–277. Academic Press, New York (1979)

  8. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehrenpreis, L.: Solution of some problems of division. I. Division by a polynomial of derivation. Am. J. Math. 76(4), 883–903 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ehrenpreis, L.: Solution of some problems of division. II. Division by a punctual distribution. Am. J. Math. 77(2), 286–292 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escudero, C.: Geometric principles of surface growth. Phys. Rev. Lett. 101, 196102 (2008)

    Article  Google Scholar 

  12. Escudero, C., Peral, I.: Some fourth order nonlinear elliptic problems related to epitaxial growth. J. Differ. Equ. 254, 2515–2531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferrari, F.: Ground state solutions for \(k-\)th Hessian operators. Boll. Un. Mat. Ital. B (7) 9, 553–586 (1995)

  14. Ferrari, F., Franchi, B., Verbitsky, I.E.: Hessian inequalities and the fractional Laplacian. J. Reine Angew. Math. 667, 133–148 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Ferrari, F., Verbitsky, I.E.: Radial fractional Laplace operators and Hessian inequalities. J. Differ. Equ. 253(1), 244–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. García Azorero, J., Peral, I.: Multiplicity of solutions for elliptics problems with critical exponents or with a non-symmetric term. Trans. Am. Math. Soc. 323(2), 877–895 (1991)

  17. Gazzola, F., Grunau, H., Sweers, G.: Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. In: Lecture Notes in Mathematics, 1991. Springer, Berlin (2010)

  18. Malgrange, B.: Existence et approximation des solutions des quations aux drives partielles et des quations de convolution. Ann. Inst. Fourier 6, 271–355 (1955–56)

    Google Scholar 

  19. Marsili, M., Maritan, A., Toigo, F., Banavar, J.R.: Stochastic growth equations and reparametrization invariance. Rev. Mod. Phys. 68, 963–983 (1996)

    Article  Google Scholar 

  20. Ortega, J.H., Zuazua, E.: Generic simplicity of the spectrum and stabilization for a plate equation. Siam J. Control Optim. 39(5), 1585–1614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stein, E.M.: Singular integrals and differentiability properties of functions. In: Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. (1970)

  23. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

  24. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of \(H^{p}\) -spaces. Acta Math. 103, 25–62 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tartar, L.: Nonlinear Analysis and Mechanics. Heriott-Watt Symposium, IV. Pitman, London, 1979

  26. Tartar, L.: Systems of Nonlinear Partial Differential Equations. Reidel, Dordrecht (1983)

    Google Scholar 

  27. Tso, K.: Remarks on critical exponents for hessian operators. Annales Inst. H. Poincaré Anal. Non Linéaire 7, 113–122 (1990)

Download references

Acknowledgments

F. Ferrari and I. Peral wish to thank the Department of Mathematics of the Universidad Autónoma de Madrid and to the department of Mathematics of the Universitá di Bologna, respectively, for its kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ireneo Peral.

Additional information

Communicated by P. Rabinowitz.

F. Ferrari was partially supported by the GNAMPA project: “Equazioni non lineari su varietà: proprietà qualitative e classificazione delle soluzioni” and FP7-IDEAS-ERC Starting Grant 2011 #277749 (EPSILON). M. Medina and I. Peral are supported by project MTM2010-18218 of MICINN, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, F., Medina, M. & Peral, I. Biharmonic elliptic problems involving the 2nd Hessian operator. Calc. Var. 51, 867–886 (2014). https://doi.org/10.1007/s00526-013-0698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0698-1

Mathematics Subject Classification (2010)

Navigation