Skip to main content
Log in

Topological minimal sets and existence results

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this article we introduce a definition of topological minimal sets, which is a generalization of that of Mumford-Shah-minimal sets. We prove some general properties as well as two existence theorems for topological minimal sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, F.J.: Plateau’s Problem: An Invitation to Varifold Geometry. W.A. Benjamin, New York (1966)

  2. Almgren, F.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4(165) (1976)

  3. Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics 139. Springer, New York (1993)

  4. David, G.: Limits of Almgren-quasiminimal sets. In: Proceedings of the conference on Harmonic Analysis, Mount Holyoke, A.M.S. Contemporary Mathematics series, vol. 320, pp. 119–145 (2003)

  5. David,G.: Singular Sets of Minimizers for the Mumford-Shah Functional. Progress in Mathematics. Birkhäuser, Basel (2005)

  6. David G.: Hölder regularity of two-dimensional almost-minimal sets in \({\mathbb{R}^n}\) . Annales de la Faculté des Sciences de Toulouse XVIII(1), 65–246 (2009)

    Article  Google Scholar 

  7. David, G., Semmes, S.: Uniform rectifiablilty and quasiminimizing sets of arbitrary codimension. Mem. Am. Math. Soc. 144(687) (2000)

  8. De Pauw T., Hardt R.: Size minimization and approximating problems. Calc. Var. 17, 405–442 (2003)

    Article  MATH  Google Scholar 

  9. Dugundji J.: Topology. Allyn and Bacon Inc., Boston (1966)

    MATH  Google Scholar 

  10. Federer, H.: Geometric Measure Theory. Grundlehren der Mathematishen Wissenschaften 153. Springer, New York (1969)

  11. Feuvrier, V.: Un résultat d’existence pour les ensembles minimaux par optimisation sur des grilles polyédrales. PhD thesis, Université de Paris-Sud 11, orsay, september http://tel.archives-ouvertes.fr/tel-00348735 (2008)

  12. Fox R.H., Artin E.: Some wild cells and spheres in three-dimensional space. Ann. Math. 49, 979–990 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  14. Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics 33. Springer, New York (1976)

  15. Liang, X.: Ensembles et cônes minimaux de dimension 2 dans les espaces euclidiens. PhD thesis, Université de Paris-Sud 11, Orsay, December (2010)

  16. Liang, X.: Global regularity for minimal sets near a \({\mathbb{T}}\) set and counterexamples. preprint, Orsay, arXiv: 1112.3565 (2011)

  17. Reifenberg E.R.: Solution of the Plateau Problem for m-dimensional surfaces of varying topological type. Acta. Math. 104, 1–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Taylor J.: The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. (2) 103, 489–539 (1976)

    Article  MATH  Google Scholar 

  19. Whitney H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Liang.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X. Topological minimal sets and existence results. Calc. Var. 47, 523–546 (2013). https://doi.org/10.1007/s00526-012-0526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0526-z

Mathematics Subject Classification

Navigation