Skip to main content

Advertisement

Log in

Estimating cooling production and monitoring efficiency in chillers using a soft sensor

  • S.I. : Emerging applications of Deep Learning and Spiking ANN
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Intensive use of heating, ventilation and air conditioning systems in buildings entails monitoring their efficiency. Moreover, cooling systems are key facilities in large buildings and can account up to 44% of the energy consumption. Therefore, monitoring efficiency in chillers is crucial and, for that reason, a sensor to measure the cooling production is required. However, manufacturers rarely install it in the chiller due to its cost. In this paper, we propose a methodology to build a soft sensor that provides an estimation of cooling production and enables monitoring the chiller efficiency. The proposed soft sensor uses independent variables (internal states of the chiller and electric power) and can take advantage of current or past observations of those independent variables. Six methods (from linear approaches to deep learning ones) are proposed to develop the model for the soft sensor, capturing relevant features on the structure of data (involving time, thermodynamic and electric variables and the number of refrigeration circuits). Our approach has been tested on two different chillers (large water-cooled and smaller air-cooled chillers) installed at the Hospital of León. The methods to implement the soft sensor are assessed according to three metrics (MAE, MAPE and \(R^2\)). In addition to the comparison of methods, the results also include the estimation of cooling production (and the comparison of the true and estimated values) and monitoring the COP indicator for a period of several days and for both chillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Nasser M, Mahmoud K (2019) Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput Appl 31(7):2727–2740. https://doi.org/10.1007/s00521-017-3225-z

    Article  Google Scholar 

  2. Ahmed T (2010) Chapter 7—Equations of state. In: Ahmed T (ed) Working guide to vapor–liquid phase equilibria calculations. Gulf Professional Publishing, Boston, pp 59–96. https://doi.org/10.1016/B978-1-85617-826-6.00007-8

    Chapter  Google Scholar 

  3. Alonso S, Morán A, Pérez D, Reguera P, Díaz I, Domínguez M (2019) Virtual sensor based on a deep learning approach for estimating efficiency in chillers. In: Macintyre J, Iliadis L, Maglogiannis I, Jayne C (eds) Engineering applications of neural networks. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  4. Alves O, Monteiro E, Brito P, Romano P (2016) Measurement and classification of energy efficiency in HVAC systems. Energy Build 130:408–419. https://doi.org/10.1016/j.enbuild.2016.08.070

    Article  Google Scholar 

  5. Bechtler H, Browne M, Bansal P, Kecman V (2001) New approach to dynamic modelling of vapour-compression liquid chillers: artificial neural networks. Appl Therm Eng 21(9):941–953. https://doi.org/10.1016/S1359-4311(00)00093-4

    Article  Google Scholar 

  6. Beghi A, Brignoli R, Cecchinato L, Menegazzo G, Rampazzo M, Simmini F (2016) Data-driven fault detection and diagnosis for HVAC water chillers. Control Eng Pract 53:79–91

    Article  Google Scholar 

  7. Bishop CM et al (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Bowerman B, O’Connell R, Koehler A (2005) Forecasting, time series, and regression: an applied approach. Duxbury advanced series in statistics and decision sciences. Thomson Brooks, Cole

    Google Scholar 

  9. Cai S, Gao J, Zhang M, Wang W, Chen G, Ooi BC (2019) Effective and efficient dropout for deep convolutional neural networks. CoRR abs/1904.03392. arXiv:1904.03392

  10. Chang YC (2007) Sequencing of chillers by estimating chiller power consumption using artificial neural networks. Build Environ 42(1):180–188. https://doi.org/10.1016/j.buildenv.2005.08.033

    Article  Google Scholar 

  11. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 1800–1807. https://doi.org/10.1109/CVPR.2017.195

  12. Ciresan D, Meier U, Gambardella L, Schmidhuber J (2012) Deep big multilayer perceptrons for digit recognition. In: Montavon G, Orr G, Müller K (eds) Neural networks: tricks of the trade, vol 7700. Springer, Berlin, pp 581–598

    Chapter  Google Scholar 

  13. Comstock MC, Braun JE, Bernhard R (1999) Experimental data from fault detection and diagnostic studies on a centrifugal chiller. Purdue University, Lafayette

    Google Scholar 

  14. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  15. Fan C, Sun Y, Zhao Y, Song M, Wang J (2019) Deep learning-based feature engineering methods for improved building energy prediction. Appl Energy 240:35–45. https://doi.org/10.1016/j.apenergy.2019.02.052

    Article  Google Scholar 

  16. Fan C, Xiao F, Zhao Y (2017) A short-term building cooling load prediction method using deep learning algorithms. Appl Energy 195:222–233

    Article  Google Scholar 

  17. Fu G (2018) Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system. Energy 148:269–282. https://doi.org/10.1016/j.energy.2018.01.180

    Article  Google Scholar 

  18. Ge Y, Wu H (2019) Prediction of corn price fluctuation based on multiple linear regression analysis model under big data. Neural Comput Appl. https://doi.org/10.1007/s00521-018-03970-4

    Article  Google Scholar 

  19. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the 14th international conference on artificial intelligence and statistics, pp 315–323

  20. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  21. Gordon JM, Ng KC (2000) Cool thermodynamics: the engineering and physics of predictive, diagnostic and optimization methods for cooling systems. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  22. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  23. Haykin SS (2009) Neural networks and learning machines, 3rd edn. Pearson Education, London

    Google Scholar 

  24. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  25. Huang G, Sun Y, Wang S (2013) Building instantaneous cooling load fused measurement: multiple-sensor-based fusion versus chiller-model-based fusion. Build Serv Eng Res Technol 34:177–194. https://doi.org/10.1177/0143624411432651

    Article  Google Scholar 

  26. Huang G, Wang S, Sun Y (2008) Enhancing the reliability of chiller control using fused measurement of building cooling load. HVAC&R Res 14(6):941–958

    Article  Google Scholar 

  27. Jolliffe I (2011) Principal component analysis. Springer, Berlin

    MATH  Google Scholar 

  28. Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33(4):795–814. https://doi.org/10.1016/j.compchemeng.2008.12.012

    Article  Google Scholar 

  29. Klein SA (1992) Design considerations for refrigeration cycles. In: International refrigeration and air conditioning conference, vol 190, pp 511–519. Purdue e-Pubs. http://docs.lib.purdue.edu/iracc/190. Accessed 19 Sept 2019

  30. Li H, Yu D, Braun JE (2011) A review of virtual sensing technology and application in building systems. HVAC&R Res 17(5):619–645. https://doi.org/10.1080/10789669.2011.573051

    Article  Google Scholar 

  31. Liu L, Kuo SM, Zhou M (2009) Virtual sensing techniques and their applications. In: 2009 international conference on networking, sensing and control. IEEE, pp 31–36

  32. Ma W, Fang S, Su B, Xue X, Li M (2017) Second-law-based analysis of vapor-compression refrigeration cycles: analytical equations for cop and new insights into features of refrigerants. Energy Convers Manag 138:426–434. https://doi.org/10.1016/j.enconman.2017.02.017

    Article  Google Scholar 

  33. Mandard E, Kouame D, Battault R, Remenieras J, Patat F (2008) Methodology for developing a high-precision ultrasound flow meter and fluid velocity profile reconstruction. IEEE Trans Ultrason Ferroelectr Freq Control 55(1):161–172. https://doi.org/10.1109/TUFFC.2008.625

    Article  Google Scholar 

  34. Mcdonald E, Zmeureanu R (2014) Virtual flow meter to estimate the water flow rates in chillers. ASHRAE Trans 120:200–208

    Google Scholar 

  35. McDonald E, Zmeureanu R (2015) Development and testing of a virtual flow meter tool to monitor the performance of cooling plants. Energy Procedia 78:1129–1134. https://doi.org/10.1016/j.egypro.2015.11.071

    Article  Google Scholar 

  36. McIntosh IB, Mitchell JW, Beckman WA (2000) Fault detection and diagnosis in chillers-part i: model development and application/discussion. ASHRAE Trans 106:268

    Google Scholar 

  37. Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Am Stat 54(1):17–24. https://doi.org/10.1080/00031305.2000.10474502

    Article  Google Scholar 

  38. Moran MJ, Shapiro HN, Boettner DD, Bailey MB (2015) Principles of engineering thermodynamics. Wiley, New York

    Google Scholar 

  39. Muhammad Ehsan R, Simon SP, Venkateswaran PR (2017) Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron. Neural Comput Appl 28(12):3981–3992. https://doi.org/10.1007/s00521-016-2310-z

    Article  Google Scholar 

  40. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398. https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  41. Reddy TA, Niebur D, Andersen KK, Pericolo PP, Cabrera G (2003) Evaluation of the suitability of different chiller performance models for on-line training applied to automated fault detection and diagnosis (rp-1139). HVAC&R Res 9(4):385–414. https://doi.org/10.1080/10789669.2003.10391077

    Article  Google Scholar 

  42. Saha P, Debnath P, Thomas P (2019) Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04267-w

    Article  Google Scholar 

  43. Saidur R, Hasanuzzaman M, Mahlia T, Rahim N, Mohammed H (2011) Chillers energy consumption, energy savings and emission analysis in an institutional buildings. Energy 36(8):5233–5238. https://doi.org/10.1016/j.energy.2011.06.027

    Article  Google Scholar 

  44. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958. https://doi.org/10.5555/2627435.2670313

    Article  MathSciNet  MATH  Google Scholar 

  45. Stratistics Market Research Consulting: Modular chillers—Global market outlook (2018–2027). Technical Report 4844759, Research and Markets (2019)

  46. Swider D, Browne M, Bansal P, Kecman V (2001) Modelling of vapour-compression liquid chillers with neural networks. Appl Therm Eng 21(3):311–329. https://doi.org/10.1016/S1359-4311(00)00036-3

    Article  Google Scholar 

  47. Teke A, Timur O (2014) Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals. Renew Sustain Energy Rev 33(Supplement C):224–235. https://doi.org/10.1016/j.rser.2014.02.002

    Article  Google Scholar 

  48. Tian C, Xing Z, Pan X, Tian Y (2019) A method for COP prediction of an on-site screw chiller applied in cinema. Int J Refrig 98:459–467. https://doi.org/10.1016/j.ijrefrig.2018.10.020

    Article  Google Scholar 

  49. Wang B, Lei Y, Li N, Yan T (2019) Deep separable convolutional network for remaining useful life prediction of machinery. Mech Syst Signal Process 134:106330

    Article  Google Scholar 

  50. Wang H (2014) Water flow rate models based on the pipe resistance and pressure difference in multiple parallel chiller systems. Energy Build 75:181–188. https://doi.org/10.1016/j.enbuild.2014.02.017

    Article  Google Scholar 

  51. Wang H (2017) Empirical model for evaluating power consumption of centrifugal chillers. Energy Build 140:359–370. https://doi.org/10.1016/j.enbuild.2017.02.019

    Article  Google Scholar 

  52. Wang S, Cui J (2005) Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method. Appl Energy 82(3):197–213

    Article  Google Scholar 

  53. Wang S, Cui J (2006) A robust fault detection and diagnosis strategy for centrifugal chillers. HVAC&R Res 12(3):407–428

    Article  Google Scholar 

  54. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853

  55. Yu F, Chan K (2007) Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Build Environ 42(11):3816–3829. https://doi.org/10.1016/j.buildenv.2006.11.029

    Article  Google Scholar 

  56. Yu F, Chan K (2013) Improved energy management of chiller systems with data envelopment analysis. Appl Therm Eng 50(1):309–317. https://doi.org/10.1016/j.applthermaleng.2012.08.023

    Article  Google Scholar 

  57. Yu F, Chan K, Sit R, Yang J (2014) Review of standards for energy performance of chiller systems serving commercial buildings. Energy Procedia 61:2778–2782. https://doi.org/10.1016/j.egypro.2014.12.308

    Article  Google Scholar 

  58. Zhao X, Yang M, Li H (2012) Development, evaluation and validation of a robust virtual sensing method for determining water flow rate in chillers. HVAC&R Res 18(5):874–889. https://doi.org/10.1080/10789669.2012.667036

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Spanish Ministerio de Ciencia e Innovación (MICINN) and the European FEDER funds under Project CICYT DPI2015-69891-C2-1-R/2-R

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafín Alonso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, S., Morán, A., Pérez, D. et al. Estimating cooling production and monitoring efficiency in chillers using a soft sensor. Neural Comput & Applic 32, 17291–17308 (2020). https://doi.org/10.1007/s00521-020-05165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05165-2

Keywords

Navigation