Skip to main content

Advertisement

Log in

Coordination of production planning and distribution in closed-loop supply chains

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A closed-loop supply chain structure organises material and information flows from origin points to consumption points, including production, recycling, disposal, and other reverse logistic activities. Some integration problems arise with this structure including production, inventory, location, routing, distribution, collection, recycling, and routing. The integration problems that are facing scientific researchers include inventory routing, location routing, and location inventory. This study considers the integration problem of a closed-loop supply chain for the production, distribution, collection, and recycling quantities, along with the distribution and collection routes for each time period of a finite planning horizon. We refer to this problem as the “Closed-Loop Supply Chain Integrated Production-Inventory-Distribution-Routing Problem” (CLSC-PRP). A mathematical model is proposed that is the first to determine both quantities and routes for the CLSC-PRP simultaneously. As the problem is known to be NP-hard in terms of computational complexity, a simulated annealing-based decomposition heuristic is developed for solving large-scale CLSC-PRP instances. The results of the proposed mathematical model for the CLSC-PRP are compared with the results of the developed heuristic and two separate models that manage forward and backward production routing problems. An extensive comparative study indicated the following: (i) the proposed model was able to reduce the cost required for operating the total supply chain by an average of 12%, along with providing a positive impact on the environment and (ii) the proposed heuristic is able to generate solutions that are close to optimal in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author (Y. Kuvvetli) upon request.

References

  1. Blumberg DF (2004) Introduction to management of reverse logistics and closed loop supply chain processes. CRC Press, Boca Raton

    Book  Google Scholar 

  2. E.P.A. (EPA) https://www.epa.gov/, USA, 2015. Accessed 14 May 2018

  3. Lei L, Liu SG, Ruszczynski A, Park S (2006) On the integrated production, inventory, and distribution routing problem. IIE Trans 38:955–970

    Article  Google Scholar 

  4. Chandra P, Fisher ML (1994) Coordination of production and distribution planning. Eur J Oper Res 72:503–517

    Article  Google Scholar 

  5. Kaya O, Urek B (2016) A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain. Comput Oper Res 65:93–103

    Article  MathSciNet  Google Scholar 

  6. Glover F, Jones G, Karney D, Klingman D, Mote J (1979) An integrated production, distribution, and inventory planning system. Interfaces 9:21–35

    Article  Google Scholar 

  7. Van Buer MG, Woodruff DL, Olson RT (1999) Solving the medium newspaper production/distribution problem. Eur J Oper Res 115:237–253

    Article  Google Scholar 

  8. Russell R, Chiang W-C, Zepeda D (2008) Integrating multi-product production and distribution in newspaper logistics. Comput Oper Res 35:1576–1588

    Article  Google Scholar 

  9. Fumero F, Vercellis C (1999) Synchronized development of production, inventory, and distribution schedules. Transp Sci 33:330–340

    Article  Google Scholar 

  10. Bard JF, Nananukul N (2010) A branch-and-price algorithm for an integrated production and inventory routing problem. Comput Oper Res 37:2202–2217

    Article  MathSciNet  Google Scholar 

  11. Toptal A, Koc U, Sabuncuoglu I (2013) A joint production and transportation planning problem with heterogeneous vehicles. J Oper Res Soc 65:180–196

    Article  Google Scholar 

  12. Boudia M, Louly MAO, Prins C (2007) A reactive GRASP and path relinking for a combined production–distribution problem. Comput Oper Res 34:3402–3419

    Article  Google Scholar 

  13. Bard JF, Nananukul N (2009) The integrated production–inventory–distribution–routing problem. J Sched 12:257–280

    Article  MathSciNet  Google Scholar 

  14. Adulyasak Y, Cordeau J-F, Jans R (2012) Optimization-based adaptive large neighborhood search for the production routing problem. Transp Sci 48:20–45

    Article  Google Scholar 

  15. Kuhn H, Liske T (2011) Simultaneous supply and production planning. Int J Prod Res 49:3795–3813

    Article  Google Scholar 

  16. Shiguemoto AL, Armentano VA (2010) A tabu search procedure for coordinating production, inventory and distribution routing problems. Int Trans Oper Res 17:179–195

    Article  Google Scholar 

  17. Armentano VA, Shiguemoto AL, Løkketangen A (2011) Tabu search with path relinking for an integrated production–distribution problem. Comput Oper Res 38:1199–1209

    Article  MathSciNet  Google Scholar 

  18. Fahimnia B, Luong L, Marian R (2012) Genetic algorithm optimisation of an integrated aggregate production–distribution plan in supply chains. Int J Prod Res 50:81–96

    Article  Google Scholar 

  19. Buscher U, Lindner G (2007) Optimizing a production system with rework and equal sized batch shipments. Comput Oper Res 34:515–535

    Article  MathSciNet  Google Scholar 

  20. Kim T, Goyal SK (2011) Determination of the optimal production policy and product recovery policy: the impacts of sales margin of recovered product. Int J Prod Res 49:2535–2550

    Article  Google Scholar 

  21. Zhang J, Liu X, Tu YL (2011) A capacitated production planning problem for closed-loop supply chain with remanufacturing. Int J Adv Manuf Technol 54:757–766

    Article  Google Scholar 

  22. Kenné J-P, Dejax P, Gharbi A (2012) Production planning of a hybrid manufacturing–remanufacturing system under uncertainty within a closed-loop supply chain. Int J Prod Econ 135:81–93

    Article  Google Scholar 

  23. Sifaleras A, Konstantaras I (2017) Variable neighborhood descent heuristic for solving reverse logistics multi-item dynamic lot-sizing problems. Comput Oper Res 78:385–392

    Article  MathSciNet  Google Scholar 

  24. Min H, Ko HJ, Park BI (2005) A Lagrangian relaxation heuristic for solving the multi-echelon, multi-commodity, close-loop supply chain network design problem. Int J Logist Syst Manage 1:382–404

    Article  Google Scholar 

  25. Darvish M, Archetti C, Coelho LC (2019) Trade-offs between environmental and economic performance in production and inventory-routing problems. Int J Prod Econ 217:269–280

    Article  Google Scholar 

  26. Kannan G, Sasikumar P, Devika K (2010) A genetic algorithm approach for solving a closed loop supply chain model: a case of battery recycling. Appl Math Model 34:655–670

    Article  MathSciNet  Google Scholar 

  27. Kim T, Goyal SK, Kim C-H (2013) Lot-streaming policy for forward–reverse logistics with recovery capacity investment. Int J Adv Manuf Technol 68:509–522

    Article  Google Scholar 

  28. Sasikumar P, Haq AN (2011) Integration of closed loop distribution supply chain network and 3PRLP selection for the case of battery recycling. Int J Prod Res 49:3363–3385

    Article  Google Scholar 

  29. Das K, Chowdhury AH (2012) Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning. Int J Prod Econ 135:209–221

    Article  Google Scholar 

  30. Das K, Rao PN (2015) Addressing environmental concerns in closed loop supply chain design and planning. Int J Prod Econ 163:34–47

    Article  Google Scholar 

  31. Iassinovskaia G, Limbourg S, Riane F (2017) The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains. Int J Prod Econ 183:570–582

    Article  Google Scholar 

  32. Qiu Y, Qiao J, Pardalos PM (2019) Optimal production, replenishment, delivery, routing and inventory management policies for products with perishable inventory. Omega 82:193–204

    Article  Google Scholar 

  33. Miranda PL, Morabito R, Ferreira D (2019) Mixed integer formulations for a coupled lot-scheduling and vehicle routing problem in furniture settings. INFOR Inf Syst Oper Res. https://doi.org/10.1080/03155986.2019.1575686

    Article  Google Scholar 

  34. Fang XJ, Du YA, Qiu YZ (2017) Reducing carbon emissions in a closed-loop production routing problem with simultaneous pickups and deliveries under carbon cap-and-trade. Sustainability 9:15

    Google Scholar 

  35. Li Y, Chu F, Chu C, Zhu Z (2019) An efficient three-level heuristic for the large-scaled multi-product production routing problem with outsourcing. Eur J Oper Res 272:914–927

    Article  MathSciNet  Google Scholar 

  36. Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. Oper Res 12:568–581

    Article  Google Scholar 

  37. Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34:975–986

    Article  MathSciNet  Google Scholar 

  38. Chibante R (2010) Parameter identification of power semiconductor device models using metaheuristics. Sciyo, India

    Book  Google Scholar 

  39. Kuvvetli Y (2016) Coordinated production–inventory–distribution routing problem on closed loop supply chain with recycling option. Industrial Engineering Department, Cukurova University, Adana, p 147

    Google Scholar 

Download references

Acknowledgements

Yusuf Kuvvetli would like to extend thanks to the Scientific and Technological Research Council of Turkey (TÜBİTAK) for supporting his Ph.D. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Kuvvetli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1


Notation of Mathematical Formulations


Indices

\(i,j,v\) :

\({\text{Indices}}\;{\text{for}}\;{\text{nodes,}}\;{\text{where}}\; 0\;{\text{denotes}}\;{\text{the}}\;{\text{facility,}}\;{\text{recyler,}}\;{\text{and}}\;{\text{warehouse}}\)

\(k\) :

\({\text{Index}}\;{\text{for}}\;{\text{vehicles}}\)

\(t\) :

\({\text{Index}}\;{\text{for}}\;{\text{periods}}\)

\(N_{c}\) :

\({\text{Set}}\;{\text{of}}\;{\text{consumption}}\;{\text{nodes}}\;N = N_{c} \cup \left\{ 0 \right\}\)

\(K\) :

\({\text{Set}}\;{\text{of}}\;{\text{avaliable}}\;{\text{trucks}}\)

\(T\) :

\({\text{Set}}\;{\text{of}}\;{\text{periods}}\;{\text{in}}\;{\text{the}}\;{\text{planning}}\;{\text{horizon}}\;T_{0} = T \cup \left\{ 0 \right\}\)

Parameters

\(C_{k}\) :

\({\text{Capacity}}\;{\text{of}}\;{\text{vehicle}}\;k\;\left( {\text{unit}} \right)\)

\(B ^{m} \left( {B ^{r} } \right)\) :

\({\text{Manufacturing}}\;\left( {\text{recycling}} \right)\;{\text{capacity}}\;\left( {\text{unit/period}} \right)\)

\(q_{t}^{m} \left( {w_{t}^{r} } \right)\) :

\({\text{Raw}}\;{\text{material}}\;{\text{purchasing}}\;\left( {{\text{returned}}\;{\text{product}}\;{\text{collection}}} \right)\;{\text{cost}}\;{\text{for}}\;{\text{period}}\;t \;\left( {\text{money/unit}} \right)\)

\(g_{i}^{m} \left( {g_{i}^{r} } \right)\) :

\({\text{Minimum }}\;{\text{new}}\;\left( {\text{returned}} \right)\;{\text{inventory}}\;{\text{level}}\;{\text{of}}\;{\text{node}}\;i\;\left( {\text{unit}} \right)\)

\(a_{i}^{m} \left( {a_{i}^{r} } \right)\) :

\({\text{Maximum}}\;{\text{new}}\;\left( {\text{returned}} \right)\;{\text{inventory}}\;{\text{level}}\;{\text{of}}\;{\text{node}}\;i\;\left( {\text{unit}} \right)\)

\(f_{k}\) :

\({\text{Fixed}}\;{\text{usage}}\;{\text{cost}}\;{\text{for}}\;{\text{vehicle}}\;k \;\left( {\text{money/period}} \right)\)

\(c_{{}}^{v}\) :

\({\text{Variable}}\;{\text{cost}}\;{\text{for}}\;{\text{transportation}}\;\left( {\text{money/distance}} \right)\)

\(s_{t}^{m} \left( {s_{t}^{r} } \right)\) :

\({\text{Production}}\;\left( {\text{recycling}} \right)\;{\text{setup }}\;{\text{cost}}\;{\text{for}}\;{\text{period }}\;t\; \left( {\text{money/period}} \right)\)

\(c_{t}^{m} \left( {c_{t}^{r} } \right)\) :

\({\text{Variable}}\;{\text{production}}\;\left( {\text{recycling}} \right)\;{\text{cost}}\;{\text{for}}\;{\text{period}}\;t\; \left( {\text{money/period}} \right)\)

\(h_{i}^{m} \left( {h_{i}^{m} } \right)\) :

\({\text{Holding}}\;{\text{cost}}\;{\text{for}}\;{\text{new}}\;\left( {\text{returned}} \right)\;{\text{product}}\;{\text{of}}\;{\text{node}}\;i\; ( {\text{money/}}\left( {{\text{unit}} \times {\text{period}}} \right)\)

\(l_{ij}\) :

\({\text{Distance}}\;{\text{between }}\left( {i,j} \right)\;{\text{pair}}\;\left( {\text{distance}} \right)\)

\(L\) :

\({\text{Maximum tour length in a period}}\)

\(d_{it}^{m} \left( {d_{it}^{r} } \right)\) :

\({\text{New }}\left( {\text{returned}} \right)\,{\text{product demand of node }}i\; {\text{at period }}t \left( {\text{unit}} \right)\)

\(\alpha\) :

\({\text{production rate}}\)

\(\beta\) :

\({\text{Maximum }}\;{\text{recycling }}\;{\text{ratio}}\)

\(\gamma\) :

\({\text{Coefficient}}\;{\text{of}}\;{\text{calculating}}\;{\text{the}}\;{\text{returned}}\;{\text{product}}\;{\text{regarding}}\;{\text{recycling}}\;{\text{quantities}}\)

Decision Variables

\(p_{t} \left( {p_{t}^{r} } \right)\) :

\({\text{Production }}\left( {\text{recycling}} \right) {\text{quantity at period }}t\; \left( {\text{unit}} \right)\)

\(p_{t}^{m}\) :

\({\text{Purshased}}\;{\text{raw}}\;{\text{material}}\;{\text{quantity}}\;{\text{at}}\; {\text{period }}\;t \;\left( {\text{unit}} \right)\)

\(Y _{t}^{m} \left( {Y _{t}^{r} } \right)\) :

\(\left\{ {\begin{array}{*{20}l} {1,} \hfill & {{\text{if}}\;{\text{new}}\;\left( {{\text{returned}}} \right)\;{\text{product}}\;{\text{is}}\;{\text{produced}}\;\left( {{\text{recycled}}} \right)\; }\\ &{ {\text{at}}\;{\text{period}}\;t} \hfill \\ {0,} \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.\)

\(I_{it}^{m} \left( {I_{it}^{r} } \right)\) :

\({\text{New }}\;\left( {\text{returned}} \right) \;{\text{inventory}}\; {\text{level}}\; {\text{on}}\; {\text{node}}\; i\; {\text{at}}\; {\text{period }}\;t \;\left( {\text{unit}} \right)\)

\(Q_{ikt}^{m} \left( {Q_{ikt}^{r} } \right)\) :

\({\text{New }}\left( {\text{returned}} \right)\,\,{\text{product delivery }}\left( {\text{pick up}} \right) {\text{amount to }}\left( {\text{from}} \right)\;{\text{node }}i {\text{at period }}t {\text{with vehicle }}k \left( {\text{unit}} \right)\)

\(X_{ijkt}^{m} \left( {X_{ijkt}^{r} } \right)\) :

\(N{\text{ew }}\left( {\text{returned}} \right) {\text{product load on travelling }}\left( {i,j} \right) {\text{pair at period }}t\;{\text{with vehicle }}k\;\left( {\text{unit}} \right)\)

\(Z_{\text{ijkt}}\) :

\(\left\{ {\begin{array}{*{20}l} {{\text{1,}}} \hfill & {{\text{if~}}\;{\text{a~}}\;{\text{delivery~}}\;{\text{made}}\;{\text{~to}}\;{\text{~}}\left( {i,j} \right)\;{\text{~pair~}}\;{\text{at}}\;{\text{~period}}\;{\text{~}}t\; } \\ & { {\text{~with~}}\;{\text{vehicle}}\;{\text{~}}k} \hfill \\ {{\text{0,}}} \hfill & {{\text{otherwise}}} \hfill \\ \end{array} } \right.\)

\(U_{\text{kt}}\) :

\(\left\{ {\begin{array}{*{20}l} { 1 , } \hfill & {{\text{if vehicle }}k\,\,{\text{is used on period }}t} \hfill \\ { 0 ,} \hfill & {\text{otherwise}} \hfill \\ \end{array} } \right.\)

Appendix 2

Parameter setting case problem instanceIn this parameters setting test instance, a 7-day planning problem is considered, and the dataset is briefly described in Table 9. Distribution activities are carried out by different capacities of vehicles (72.09 ton), and during the planning horizon, eight different points demand new products or collection requests for recycling. The distances between cities are generated randomly.

Table 9 Parameters of the problem instance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuvvetli, Y., Erol, R. Coordination of production planning and distribution in closed-loop supply chains. Neural Comput & Applic 32, 13605–13623 (2020). https://doi.org/10.1007/s00521-020-04770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04770-5

Keywords

Navigation