Skip to main content
Log in

Image retrieval based on gradient-structures histogram

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Color perception and orientation selection are very important mechanisms of the human brain that have close relationships with feature extraction and representation. However, extracting low-level features by mimicking these mechanisms remains challenging. To address this problem, we present the gradient-structures histogram as a novel method of content-based image retrieval (CBIR). Its main highlights are: (1) a novel and easy-to-calculate local structure detector, the gradient-structures, which simulates the orientation selection mechanism based on the opponent-color space and connects it with low-level features, (2) a novel discriminative representation method that describes color, intensity and orientation features. It is convenient, as it does not require weight coefficients for color, intensity and orientation. (3) The proposed representation method has the advantages of being histogram-based and having the power to discriminate spatial layout, color and edge cues. The proposed method provides efficient CBIR performance, as demonstrated by comparative experiments in which it significantly outperformed some state-of-the-art methods, including the Bow method, local binary pattern histogram, perceptual uniform descriptor, color volume histogram, color difference histogram, some improved LBP methods and the Tree2Vector method in terms of precision/recall and AUC metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hubel D, Wiesel TN (1962) Receptive fields. Binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    Google Scholar 

  2. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond Ser B Biol Sci 207(1167):187–217

    Google Scholar 

  3. Manjunath BS, Salembier P, Sikora T (2002) Introduction to MPEG-7: multimedia content description interface. Wiley, London

    Google Scholar 

  4. Manjunathi BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Google Scholar 

  5. Hua Ji-Zhao, Liu Guang-Hai, Song Shu-Xiang (2019) Content-based image retrieval using color volume histograms. Int J Pattern Recognit Artif Intell 33(9):1940010

    Google Scholar 

  6. Singh C, Walia E, Kaur KP (2017) Color texture description with novel local binary patterns for effective image retrieval. Pattern Recogn 76:50–68

    Google Scholar 

  7. Thompson EM, Biasotti S (2018) Description and retrieval of geometric patterns on surface meshes using an edge-based LBP approach. Pattern Recogn 82:1–15

    Google Scholar 

  8. Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25(9):4018–4032

    MathSciNet  MATH  Google Scholar 

  9. Liu G-H, Yang J-Y (2008) Image retrieval based on the texton co-occurrence matrix. Pattern Recogn 41(12):3521–3527

    MATH  Google Scholar 

  10. Liu G-H, Zhang L et al (2010) Image retrieval based on multi-texton histogram. Pattern Recogn 43(7):2380–2389

    MATH  Google Scholar 

  11. Liu G-H (2016) Content-based image retrieval based on Cauchy density function histogram. In: 12th International conference on natural computation, fuzzy systems and knowledge discovery, pp 506–510

  12. Liu G-H, Yang J-Y (2013) Content-based image retrieval using color deference histogram. Pattern Recogn 46(1):188–198

    Google Scholar 

  13. Liu G-H, Li Z-Y, Zhang L, Xu Y (2011) Image retrieval based on micro-structure descriptor. Pattern Recognit 44(9):2123–2133

    Google Scholar 

  14. Liu G-H, Yang J-Y, Li ZY (2015) Content-based image retrieval using computational visual attention model. Pattern Recogn 48(8):2554–2566

    Google Scholar 

  15. Ojala T, Pietikanen M, Maenpaa T (2002) Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Google Scholar 

  16. Clement M, Kurtz C, Wendling L (2018) Learning spatial relations and shapes for structural object description and scene recognition. Pattern Recogn 84:197–210

    Google Scholar 

  17. Hong B, Soatto S (2015) Shape matching using multiscale integral invariants. IEEE Trans Pattern Anal Mach Intell 37(1):151–160

    Google Scholar 

  18. Žunić J, Rosin PL, Ilić V (2018) Disconnectedness: a new moment invariant for multi-component shapes. Pattern Recogn 78:91–102

    Google Scholar 

  19. Malu G, Elizabeth S, Koshy SM (2018) Circular mesh-based shape and margin descriptor for object detection. Pattern Recogn 84:97–111

    Google Scholar 

  20. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Google Scholar 

  21. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. IEEE Conf Comput Vis Pattern Recognit 2:506–513

    Google Scholar 

  22. Bay H, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. Eur Conf Comput Vis 1:404–417

    Google Scholar 

  23. Mikolajczyk K, Tuytelaars T, Schmid C et al (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72

    Google Scholar 

  24. Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: fast retina keypoint. In: IEEE conference on computer vision and pattern recognition (CVPR)

  25. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Google Scholar 

  26. Sivic J, Zisserman A (2009) Efficient visual search of videos cast as text retrieval. IEEE Trans Pattern Anal Mach Intell 31(4):591–606

    Google Scholar 

  27. van Gemert JC, Veenman CJ, Smeulders AWM, Geusebroek JM (2010) Visual word ambiguity. IEEE Trans Pattern Anal Mach Intell 32(7):1271–1283

    Google Scholar 

  28. Wang L, Zhou L, Shen C, Liu L, Liu H (2014) A hierarchical word-merging algorithm with class separability measure. IEEE Trans Pattern Anal Mach Intell 36(3):417–435

    Google Scholar 

  29. Lobel H, Vidal R, Soto A (2015) Learning shared, discriminative, and compact representations for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(11):2218–2231

    Google Scholar 

  30. Liu L, Wang L, Shen C (2016) A generalized probabilistic framework for compact codebook creation. IEEE Trans Pattern Anal Mach Intell 38(2):224–237

    Google Scholar 

  31. Zhou W, Li H, Hong R, Lu Y, Tian Q (2015) BSIFT: toward data-independent codebook for large scale image search. IEEE Trans Pattern Anal Mach Intell 24(3):967–979

    MathSciNet  MATH  Google Scholar 

  32. Takahashi T, Kurita T (2015) Mixture of subspaces image representation and compact coding for large-scale image retrieval. IEEE Trans Pattern Anal Mach Intell 37(7):1469–1479

    Google Scholar 

  33. ImageNet. http://www.image-net.org

  34. https://en.wikipedia.org/wiki/Color_vision

  35. Liu G-H, Yang J-Y (2019) Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process 28(1):6–16

    MathSciNet  MATH  Google Scholar 

  36. Burger W, Burge MJ (2009) Principles of digital image processing: core algorithms. Springer, Berlin

    MATH  Google Scholar 

  37. Gonzalez RC, Woods RE (2018) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  38. Treisman A (1980) A feature in integration theory of attention. Cogn Psychol 12(1):97–136

    MathSciNet  Google Scholar 

  39. Lance GN, Williams WT (1967) Mixed-data classificatory programs I—agglomerative systems. Aust Comput J 1(1):15–20

    Google Scholar 

  40. van Rijsbergen CJ (1979) Information retrieval, 2nd edn. Butterworths, London

    MATH  Google Scholar 

  41. Liu S, Wu J, Feng L et al (2018) Perceptual uniform descriptor and ranking on manifold for image retrieval. Inf Sci 424(2018):235–249

    MathSciNet  Google Scholar 

  42. Tzelepi M, Tefas A (2018) Deep convolutional learning for content based image retrieval. Neurocomputing 275(31):2467–2478

    Google Scholar 

  43. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 9(6):1635–1650

    MathSciNet  MATH  Google Scholar 

  44. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    MathSciNet  MATH  Google Scholar 

  45. Zhang H, Wang S, Xu X, Chow TWS, Wu QMJ (2018) Tree2Vector: learning a vectoral representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 29(11):5304–5318

    MathSciNet  Google Scholar 

  46. Zhang H, Ji Y, Huang W et al (2018) Sitcom-star-based clothing retrieval for video advertising: a deep learning framework. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3579-x

    Article  Google Scholar 

  47. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963

    Google Scholar 

  48. Zhang H, Chow TWS, Wu QMJ (2016) Organizing books and authors by multilayer SOM. IEEE Trans Neural Netw Learn Syst 27(12):2537–2550

    Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 61866005) and the project of the Guangxi Natural Science Foundation of China (Grant No. 2018GXNSFAA138017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hai Liu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, BH., Liu, GH. Image retrieval based on gradient-structures histogram. Neural Comput & Applic 32, 11717–11727 (2020). https://doi.org/10.1007/s00521-019-04657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04657-0

Keywords

Navigation