Skip to main content
Log in

An efficient hybrid approach of improved adaptive neural fuzzy inference system and teaching learning-based optimization for design optimization of a jet pump-based thermoacoustic-Stirling heat engine

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The acoustic streaming is a key drawback and eliminates the performance of a jet pump-based thermoacoustic-Stirling heat engine. The present study deals with a new hybrid optimization approach to reduce the acoustic streaming energy. The proposed work is an integration of Taguchi method (TM), adaptive neural fuzzy inference system (ANFIS), and teaching–learning-based optimization (TLBO). The Taguchi method plays three important roles. The first role is to layout the number of experiments. The second role is to identify the most appropriate parameters for ANFIS structure regarding the number of input membership functions (MFs), types of input MFs, optimal learning method, and types of output MFs. In order to determine the optimum parameters for the ANFIS structure, the root-mean-squared error, a performance criterion, is minimized by using the TM. The final role of TM is to optimize the controllable parameters of the TLBO. Subsequently, modeling between geometric parameters and acoustic streaming is established by the built ANFIS structure. Finally, the TLBO is adopted by optimizing the design parameters. The outcomes of study revealed that the acoustic streaming is relatively reduced. Based on Wilcoxon signed-rank test and Friedman test, it proves that the effectiveness of the proposed hybrid approach is better to other evolutionary algorithms. The current approach is an efficient optimizer for complex optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Swift GW (1988) Thermoacoustic engines. The Journal of the Acoustical Society of America. 84(4):1145–1180

    Article  Google Scholar 

  2. Kaushik SC, Kumarm S (2000) Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses. Energy 25(10):989–1003

    Article  Google Scholar 

  3. Backhaus S, Swift GW (1999) A thermoacoustic Stirling heat engine. Nature 399(6734):335

    Article  Google Scholar 

  4. Penelet G, Gusev V, Lotton P, Bruneau M (2006) Nontrivial influence of acoustic streaming on the efficiency of annular thermoacoustic prime movers. Phys Lett A 351(4–5):268–273. https://doi.org/10.1016/j.physleta.2005.11.011

    Article  Google Scholar 

  5. Biwa T, Tashiro Y, Ishigaki M, Ueda Y, Yazaki T (2007) Measurements of acoustic streaming in a looped-tube thermoacoustic engine with a jet pump. J Appl Phys 101(6):064914. https://doi.org/10.1063/1.2713360

    Article  Google Scholar 

  6. Hu JY, Luo EC, Dai W, Zhang LM (2017) Parameter sensitivity analysis of duplex Stirling coolers. Appl Energy 190:1039–1046. https://doi.org/10.1016/j.apenergy.2017.01.022

    Article  Google Scholar 

  7. Sun DM, Wang K, Zhang XJ, Guo YN, Xu Y, Qiu LM (2013) A traveling-wave thermoacoustic electric generator with a variable electric R-C load. Appl Energy 106:377–382. https://doi.org/10.1016/j.apenergy.2013.01.051

    Article  Google Scholar 

  8. Wang K, Dubey S, Choo FH, Duan F (2016) A transient one-dimensional numerical model for kinetic Stirling engine. Appl Energy 183:775–790. https://doi.org/10.1016/j.apenergy.2016.09.024

    Article  Google Scholar 

  9. Wu Z, Yu G, Zhang L, Dai W, Luo E (2014) Development of a 3 kW double-acting thermoacoustic Stirling electric generator. Appl Energy 136:866–872. https://doi.org/10.1016/j.apenergy.2014.04.105

    Article  Google Scholar 

  10. Yu G, Wang X, Dai W, Luo E (2013) Study on energy conversion characteristics of a high frequency standing-wave thermoacoustic heat engine. Appl Energy 111:1147–1151. https://doi.org/10.1016/j.apenergy.2012.09.050

    Article  Google Scholar 

  11. Zhu S, Yu G, Jongmin O, Xu T, Wu Z, Dai W, Luo E (2018) Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system. Appl Energy 226:522–533. https://doi.org/10.1016/j.apenergy.2018.05.122

    Article  Google Scholar 

  12. Feng Y, Tang K, Jin T, Zhang K, Yang R (2018) Performance comparison of jet pumps with round and sharp edge of small opening in oscillatory flow. Appl Therm Eng 139:562–568. https://doi.org/10.1016/j.applthermaleng.2018.05.023

    Article  Google Scholar 

  13. Tang K, Feng Y, Jin T, Jin S, Li M, Yang R (2017) Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine. Appl Therm Eng 115:1089–1100. https://doi.org/10.1016/j.applthermaleng.2017.01.054

    Article  Google Scholar 

  14. Tijani MEH, Spoelstra S (2013) A hot air driven thermoacoustic-Stirling engine. Appl Therm Eng 61(2):866–870. https://doi.org/10.1016/j.applthermaleng.2013.04.052

    Article  Google Scholar 

  15. Chen M, Ju YL (2015) Effect of different working gases on the performance of a small thermoacoustic Stirling engine. Int J Refrig 51:41–51. https://doi.org/10.1016/j.ijrefrig.2014.12.006

    Article  Google Scholar 

  16. Ahmadi MH, Amin Nabakhteh M, Ahmadi M-A, Pourfayaz F, Bidi M (2017) Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell-Boltzmann gases. Physica A 483:337–350. https://doi.org/10.1016/j.physa.2017.04.079

    Article  Google Scholar 

  17. Qian S, Yu J, Yan G (2017) A review of regenerative heat exchange methods for various cooling technologies. Renew Sustain Energy Rev 69:535–550. https://doi.org/10.1016/j.rser.2016.11.180

    Article  Google Scholar 

  18. Wang K, Sanders SR, Dubey S, Choo FH, Duan F (2016) Stirling cycle engines for recovering low and moderate temperature heat: a review. Renew Sustain Energy Rev 62:89–108. https://doi.org/10.1016/j.rser.2016.04.031

    Article  Google Scholar 

  19. Yang P, Fang M, Liu YW (2014) Optimization of a Phase Adjuster in a Thermo-acoustic Stirling Engine Using Response Surface Methodology. Energy Procedia 61:1772–1775. https://doi.org/10.1016/j.egypro.2014.12.209

    Article  Google Scholar 

  20. Tijani MEH, Spoelstra S (2011) A high performance thermoacoustic engine. J Appl Phys 110(9):093519. https://doi.org/10.1063/1.3658872

    Article  Google Scholar 

  21. <backhaus2000-[8].pdf>

  22. Pillai MA, Deenadayalan E (2014) A review of acoustic energy harvesting. International Journal of Precision Engineering and Manufacturing 15(5):949–965. https://doi.org/10.1007/s12541-014-0422-x

    Article  Google Scholar 

  23. Chaitou H, Nika P (2012) Exergetic optimization of a thermoacoustic engine using the particle swarm optimization method. Energy Convers Manag 55:71–80. https://doi.org/10.1016/j.enconman.2011.10.024

    Article  Google Scholar 

  24. Babaei H, Siddiqui K (2008) Design and optimization of thermoacoustic devices. Energy Convers Manag 49(12):3585–3598. https://doi.org/10.1016/j.enconman.2008.07.002

    Article  Google Scholar 

  25. Tang K, Feng Y, Jin SH, Jin T, Li M (2015) Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine. Appl Energy 148:305–313. https://doi.org/10.1016/j.apenergy.2015.03.092

    Article  Google Scholar 

  26. Liu Y-W, Yang P (2014) Influence of inner diameter and position of phase adjuster on the performance of the thermo-acoustic Stirling engine. Appl Therm Eng 73(1):1141–1150. https://doi.org/10.1016/j.applthermaleng.2014.09.002

    Article  Google Scholar 

  27. Yang P, Liu Y-W, Zhong G-Y (2016) Prediction and parametric analysis of acoustic streaming in a thermoacoustic Stirling heat engine with a jet pump using response surface methodology. Appl Therm Eng 103:1004–1013. https://doi.org/10.1016/j.applthermaleng.2016.04.157

    Article  Google Scholar 

  28. Yang P, Chen H, Y-w Liu (2017) Application of response surface methodology and desirability approach to investigate and optimize the jet pump in a thermoacoustic Stirling heat engine. Appl Therm Eng 127:1005–1014. https://doi.org/10.1016/j.applthermaleng.2017.08.077

    Article  Google Scholar 

  29. Rout SK, Choudhury BK, Sahoo RK, Sarangi SK (2014) Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm. Cryogenics 62:71–83. https://doi.org/10.1016/j.cryogenics.2014.03.019

    Article  Google Scholar 

  30. Rao RV, Waghmare GG (2015) Multi-objective design optimization of a plate-fin heat sink using a teaching-learning-based optimization algorithm. Appl Therm Eng 76:521–529. https://doi.org/10.1016/j.applthermaleng.2014.11.052

    Article  Google Scholar 

  31. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  32. Dao T-P, Huang S-C (2016) Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper. Microsyst Technol 23(2):441–456. https://doi.org/10.1007/s00542-016-3048-3

    Article  Google Scholar 

  33. Dao T-P, Huang S-C (2017) Design and multi-objective optimization for a broad self-amplified 2-DOF monolithic mechanism. Sādhanā 42(9):1527–1542. https://doi.org/10.1007/s12046-017-0714-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Dao T-P, Huang S-C (2017) Optimization of a two degrees of freedom compliant mechanism using Taguchi method-based grey relational analysis. Microsyst Technol 23(10):4815–4830. https://doi.org/10.1007/s00542-017-3292-1

    Article  Google Scholar 

  35. Dao T-P, Huang S-C, Thang PT (2017) Hybrid Taguchi-cuckoo search algorithm for optimization of a compliant focus positioning platform. Appl Soft Comput 57:526–538. https://doi.org/10.1016/j.asoc.2017.04.038

    Article  Google Scholar 

  36. Galankashi MR, Fallahiarezoudar E, Moazzami A, Helmi SA, Rohani JM, Yusof NM (2016) An efficient integrated simulation–Taguchi approach for sales rate evaluation of a petrol station. Neural Comput Appl 29(4):1073–1085. https://doi.org/10.1007/s00521-016-2491-5

    Article  Google Scholar 

  37. Bayca SU, Kisik H (2018) Optimization of leaching parameters of aluminum hydroxide extraction from bauxite waste using the Taguchi method. Environmental Progress & Sustainable Energy 37(1):196–202. https://doi.org/10.1002/ep.12654

    Article  Google Scholar 

  38. Brahmeswara Rao D, Venkata Rao K, Gopala Krishna A (2018) A hybrid approach to multi response optimization of micro milling process parameters using Taguchi method based graph theory and matrix approach (GTMA) and utility concept. Measurement 120:43–51. https://doi.org/10.1016/j.measurement.2018.02.005

    Article  Google Scholar 

  39. Celik N, Pusat G, Turgut E (2018) Application of Taguchi method and grey relational analysis on a turbulated heat exchanger. Int J Therm Sci 124:85–97. https://doi.org/10.1016/j.ijthermalsci.2017.10.007

    Article  Google Scholar 

  40. Hong Y-Y, Beltran AA, Paglinawan AC (2018) A robust design of maximum power point tracking using Taguchi method for stand-alone PV system. Appl Energy 211:50–63. https://doi.org/10.1016/j.apenergy.2017.11.041

    Article  Google Scholar 

  41. Kotcioglu I, Khalaji MN, Cansiz A (2018) Heat transfer analysis of a rectangular channel having tubular router in different winglet configurations with Taguchi method. Appl Therm Eng 132:637–650. https://doi.org/10.1016/j.applthermaleng.2017.12.120

    Article  Google Scholar 

  42. Chen M-Y (2013) A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering. Inf Sci 220:180–195. https://doi.org/10.1016/j.ins.2011.09.013

    Article  Google Scholar 

  43. Pousinho HMI, Mendes VMF, Catalão JPS (2011) A hybrid PSO–ANFIS approach for short-term wind power prediction in Portugal. Energy Convers Manag 52(1):397–402. https://doi.org/10.1016/j.enconman.2010.07.015

    Article  Google Scholar 

  44. Dadgarnia A, Heidari AA (2010) A Fast Systematic Approach for Microstrip Antenna Design and Optimization using ANFIS and GA. Journal of Electromagnetic Waves and Applications 24(16):2207–2221. https://doi.org/10.1163/156939310793699037

    Article  Google Scholar 

  45. De Jesús Rubio J, Lughofer E, Meda-Campaña JA, Páramo LA, Novoa JF, Pacheco J (2018) Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models. Journal of Intelligent & Fuzzy Systems 35(2):2585–2596. https://doi.org/10.3233/jifs-18425

    Article  Google Scholar 

  46. Soares Alessandra M, Fernandes Bruno JT, Bastos-Filho Carmelo JA (2018) Pyramidal neural networks with evolved variable receptive fields. Neural Comput Appl 29(12):1443–1453. https://doi.org/10.1007/s00521-016-2656-2

    Article  Google Scholar 

  47. De Jesús Rubio J (2018) Error convergence analysis of the SUFIN and CSUFIN. Appl Soft Comput 72:587–595. https://doi.org/10.1016/j.asoc.2018.04.003

    Article  Google Scholar 

  48. Liu Y, Wang Z, Yuan Y, Alsaadi FE (2018) Partial-nodes-based state estimation for complex networks with unbounded distributed delays. IEEE transactions on neural networks and learning systems 29(8):3906–3912. https://doi.org/10.1109/tnnls.2017.2740400

    Article  MathSciNet  Google Scholar 

  49. De Jesús Rubio J (2009) SOFMLS: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309. https://doi.org/10.1109/tfuzz.2009.2029569

    Article  Google Scholar 

  50. Li X, Li H, Sun B, Wang F (2018) Assessing information security risk for an evolving smart city based on fuzzy and grey FMEA. Journal of Intelligent & Fuzzy Systems 34(4):2491–2501. https://doi.org/10.3233/jifs-172097

    Article  Google Scholar 

  51. Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27:158–168. https://doi.org/10.1016/j.asoc.2014.11.012

    Article  Google Scholar 

  52. Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2015) Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera. Appl Math Model 39(7):1837–1852. https://doi.org/10.1016/j.apm.2014.10.016

    Article  MATH  Google Scholar 

  53. Adio SA, Mehrabi M, Sharifpur M, Meyer JP (2016) Experimental investigation and model development for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. Int Commun Heat Mass Transfer 72:71–83. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.005

    Article  Google Scholar 

  54. Hosoz M, Ertunc HM, Karabektas M, Ergen G (2013) ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends. Appl Therm Eng 60(1–2):24–32. https://doi.org/10.1016/j.applthermaleng.2013.06.040

    Article  Google Scholar 

  55. Huang C-N, Yu C-C (2016) Integration of Taguchi’s method and multiple-input, multiple-output ANFIS inverse model for the optimal design of a water-cooled condenser. Appl Therm Eng 98:605–609. https://doi.org/10.1016/j.applthermaleng.2015.11.112

    Article  Google Scholar 

  56. Mohammadi K, Shamshirband S, Petković D, Yee PL, Mansor Z (2016) Using ANFIS for selection of more relevant parameters to predict dew point temperature. Appl Therm Eng 96:311–319. https://doi.org/10.1016/j.applthermaleng.2015.11.081

    Article  Google Scholar 

  57. Shamshirband S, Malvandi A, Karimipour A, Goodarzi M, Afrand M, Petković D, Dahari M, Mahmoodian N (2015) Performance investigation of micro- and nano-sized particle erosion in a 90° elbow using an ANFIS model. Powder Technol 284:336–343. https://doi.org/10.1016/j.powtec.2015.06.073

    Article  Google Scholar 

  58. Sun W, Hu P, Lei F, Zhu N, Jiang Z (2015) Case study of performance evaluation of ground source heat pump system based on ANN and ANFIS models. Appl Therm Eng 87:586–594. https://doi.org/10.1016/j.applthermaleng.2015.04.082

    Article  Google Scholar 

  59. Yaïci W, Entchev E (2016) Adaptive Neuro-Fuzzy Inference System modelling for performance prediction of solar thermal energy system. Renewable Energy 86:302–315. https://doi.org/10.1016/j.renene.2015.08.028

    Article  Google Scholar 

  60. Aouf A, Boussaid L, Sakly A (2018) TLBO-Based Adaptive Neurofuzzy Controller for Mobile Robot Navigation in a Strange Environment. Comput Intell Neurosci 2018:3145436. https://doi.org/10.1155/2018/3145436

    Article  Google Scholar 

  61. Aydilek İB (2018) A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput 66:232–249. https://doi.org/10.1016/j.asoc.2018.02.025

    Article  Google Scholar 

  62. Rahbari O, Omar N, Firouz Y, Rosen MA, Goutam S, Van Den Bossche P, Van Mierlo J (2018) A novel state of charge and capacity estimation technique for electric vehicles connected to a smart grid based on inverse theory and a metaheuristic algorithm. Energy 155:1047–1058. https://doi.org/10.1016/j.energy.2018.05.079

    Article  Google Scholar 

  63. Yilmaz B, Aras E, Nacar S, Kankal M (2018) Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models. The Science of the total environment 639:826–840. https://doi.org/10.1016/j.scitotenv.2018.05.153

    Article  Google Scholar 

  64. García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. Journal of Machine Learning Research 9:2677–2694

    MATH  Google Scholar 

  65. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research 7:1–30

    MathSciNet  MATH  Google Scholar 

  66. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(6):617–644. https://doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.01-2016.20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Phong Dao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Chau, N., Dao, TP. & Dang, V.A. An efficient hybrid approach of improved adaptive neural fuzzy inference system and teaching learning-based optimization for design optimization of a jet pump-based thermoacoustic-Stirling heat engine. Neural Comput & Applic 32, 7259–7273 (2020). https://doi.org/10.1007/s00521-019-04249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04249-y

Keywords

Navigation