Skip to main content
Log in

EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm

  • S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the current decade, ambient assisted living is attracting widespread interest due to the rapidly aging global population. The cloud-based Internet of things (IoT) healthcare systems are facing many barriers to handle the big healthcare data that IoT generates. Edge of things computing is one of the promising solutions. Accordingly, this paper proposes a hybrid ambient assisted living framework with naïve Bayes–firefly algorithm (HAAL-NBFA) for monitoring elderly patients suffering from chronic diseases. This architecture exploits the current advances in the IoT by using ambient and biomedical sensors to collect the data of the elderly patient and then fuse it into context states to predict the health status of the patient in real time using context-awareness techniques. The proposed HAAL-NBFA framework proposes a five-phase classification technique to handle big imbalanced datasets resulting from long-term monitoring of elderly patients. In this paper, the firefly algorithm (FA) has been used to optimize naïve Bayes classifier (NB) which selects the minimum features that give the highest accuracy. The proposed NB-FA acts as a safe-fail module that decides when to stop the system and when to permit its continuation in case of sensor’s failure. The experimental results proved that the proposed HAAL-NBFA had achieved high accuracy and sensitivity in predicting the health status of patients suffering from blood pressure (BP) disorders. Furthermore, the importance of NB-FA in accelerating classifications and maintaining the continuity of HAAL-NBFA’s operation has been proved by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rashidi P, Mihailidis A (2013) A survey on ambient-assisted living tools for older adults. IEEE J Biomed Heal Inform 17:579–590. https://doi.org/10.1109/JBHI.2012.2234129

    Article  Google Scholar 

  2. Sadri F (2011) Ambient intelligence: a survey. ACM Comput Surv 43:1–66. https://doi.org/10.1145/1978802.1978815

    Article  Google Scholar 

  3. Elhoseny M, Shehab A, Yuan X (2017) Optimizing robot path in dynamic environments using genetic algorithm and Bezier curve. J Intell Fuzzy Syst 33:2305–2316

    Article  MATH  Google Scholar 

  4. Dubey H, Monteiro A, Constant N, et al (2017) Fog computing in medical internet-of-things: architecture, implementation, and applications. In: Handbook of large-scale distributed computing in smart healthcare. Springer, Berlin, pp 281–321

  5. Ye J, Dobson S, McKeever S (2012) Situation identification techniques in pervasive computing: a review. Pervasive Mob Comput 8:36–66

    Article  Google Scholar 

  6. Elhoseny M, Ramirez-Gonzalez G, Abu-Elnasr OM, et al (2018) Secure medical data transmission model for IoT-based healthcare systems. IEEE Access pp 1–1. https://doi.org/10.1109/access.2018.2817615

  7. Sarker VK, Jiang M, Gia TN, et al (2017) Portable multipurpose bio-signal acquisition and wireless streaming device for wearables. In: SAS 2017—2017 IEEE Sensors Applications Symposium pp 3–8. https://doi.org/10.1109/sas.2017.7894053

  8. Emiliani PL, Stephanidis C (2005) Universal access to ambient intelligence environments: opportunities and challenges for people with disabilities. IBM Syst J 44:605–619. https://doi.org/10.1147/sj.443.0605

    Article  Google Scholar 

  9. Forkan A, Khalil I, Tari Z (2014) CoCaMAAL: a cloud-oriented context-aware middleware in ambient assisted living. Futur Gener Comput Syst 35:114–127. https://doi.org/10.1016/j.future.2013.07.009

    Article  Google Scholar 

  10. Forkan A, Khalil I, Ibaida A, Tari Z (2015) BDCaM: big data for context-aware monitoring–a personalized knowledge discovery framework for assisted healthcare. IEEE Trans Cloud Comput pp 1–1. https://doi.org/10.1109/tcc.2015.2440269

  11. Hassan MK, El Desouky AI, Elghamrawy SM, Sarhan AM (2018) Intelligent hybrid remote patient-monitoring model with cloud-based framework for knowledge discovery. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2018.02.032

    Google Scholar 

  12. Elhoseny M, Abdelaziz A, Salama AS, et al (2018) A hybrid model of Internet of Things and cloud computing to manage big data in health services applications. Futur Gener Comput Syst (in press)

  13. Darwish A, Hassanien AE, Elhoseny M et al (2017) The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0659-1

    Google Scholar 

  14. Abawajy JH, Hassan MM (2017) Federated internet of things and cloud computing pervasive patient health monitoring system. IEEE Commun Mag 55:48–53. https://doi.org/10.1109/MCOM.2017.1600374CM

    Article  Google Scholar 

  15. Andriopoulou F, Dagiuklas T, Orphanoudakis T (2017) Integrating IoT and fog computing for healthcare service delivery. In: Components and services for IoT platforms. Springer, Berlin, pp 213–232

  16. Masouros D, Bakolas I, Tsoutsouras V, et al (2017) From edge to cloud: design and implementation of a healthcare Internet of Things infrastructure. In: 2017 27th international symposium on power and timing modeling, optimization and simulation (PATMOS), pp 1–6

  17. Friedman N, Geiger D, Goldszmidt M et al (1997) Bayesian network classifiers *. Mach Learn 29:131–163. https://doi.org/10.1023/A:1007465528199

    Article  MATH  Google Scholar 

  18. Webb GI (2011) Naïve bayes. In: Encyclopedia of machine learning. Springer, Berlin, pp 713–714

  19. Lewis SM, Cratsley CK (2008) Flash signal evolution, mate choice, and predation in fireflies. Annu Rev Entomol 53:293–321. https://doi.org/10.1146/annurev.ento.53.103106.093346

    Article  Google Scholar 

  20. de Wet JR, Wood KV, DeLuca M et al (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737. https://doi.org/10.1128/MCB.7.2.725

    Article  Google Scholar 

  21. Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46. https://doi.org/10.1016/j.swevo.2013.06.001

    Article  Google Scholar 

  22. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in Bioinformatics), pp 169–178

  23. He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21:1263–1284. https://doi.org/10.1109/TKDE.2008.239

    Article  Google Scholar 

  24. López V, Fernández A, García S et al (2013) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci (Ny) 250:113–141. https://doi.org/10.1016/j.ins.2013.07.007

    Article  Google Scholar 

  25. Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling method for learning from imbalanced data sets. Comput Intell 20:18–36. https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x

    Article  MathSciNet  Google Scholar 

  26. Ting KM (2002) An instance-weighting method to induce cost-sensitive trees. IEEE Trans Knowl Data Eng 14:659–665. https://doi.org/10.1109/TKDE.2002.1000348

    Article  Google Scholar 

  27. Elkan C (2001) The foundations of cost-sensitive learning. In: IJCAI international joint conference on artificial intelligence, pp 973–978

  28. Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. Lnai 3201:39–50. https://doi.org/10.1007/978-3-540-30115-8_7

    MATH  Google Scholar 

  29. Sun Y, Kamel MS, Wong AKC, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 40:3358–3378. https://doi.org/10.1016/j.patcog.2007.04.009

    Article  MATH  Google Scholar 

  30. Tang Y, Zhang YQ, Chawla NV (2009) SVMs modeling for highly imbalanced classification. IEEE Trans Syst Man Cybern Part B Cybern 39:281–288. https://doi.org/10.1109/TSMCB.2008.2002909

    Article  Google Scholar 

  31. Díez-Pastor JF, Rodríguez JJ, García-Osorio C, Kuncheva LI (2015) Random balance: ensembles of variable priors classifiers for imbalanced data. Knowl-Based Syst 85:96–111. https://doi.org/10.1016/j.knosys.2015.04.022

    Article  Google Scholar 

  32. Mazurowski MA, Habas PA, Zurada JM et al (2008) Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw 21:427–436. https://doi.org/10.1016/j.neunet.2007.12.031

    Article  Google Scholar 

  33. He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: Proceedings of the international joint conference on neural networks, pp 1322–1328

  34. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  35. Chawla NV (2009) Data mining for imbalanced datasets: an overview. In: Data mining and knowledge discovery handbook, pp 875–886

  36. López V, Fernández A, Moreno-Torres JG, Herrera F (2012) Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Syst Appl 39:6585–6608. https://doi.org/10.1016/j.eswa.2011.12.043

    Article  Google Scholar 

  37. Li X, Li X, Wang Y, et al (2008) Learning query intent from regularized click graphs. In: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval, 339–346. https://doi.org/10.1145/1390334.1390393

  38. Libelium Comunicaciones Distribuidas S.L. (2017) Mysignals hw–ehealth and medical IoT development platform for arduino. http://www.my-signals.com/#what-is-mysignals. Accessed 1 Jan 2017

  39. Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern Part C Appl Rev 40:1–12

    Article  Google Scholar 

  40. Elhoseny M, Farouk A, Zhou N et al (2017) dynamic multi-hop clustering in a wireless sensor network: performance improvement. Wirel Pers Commun 95:3733–3753. https://doi.org/10.1007/s11277-017-4023-8

    Article  Google Scholar 

  41. Elsayed W, Elhoseny M, Sabbeh S, Riad A (2017) Self-maintenance model for wireless sensor networks. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2017.12.022

    Google Scholar 

  42. Dementyev A, Hodges S, Taylor S, Smith J (2013) Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. In: 2013 IEEE international wireless symposium, IWS 2013

  43. Elhoseny M, Yuan X, El-Minir HK, Riad AM (2016) An energy efficient encryption method for secure dynamic WSN. Secur Commun Networks 9:2024–2031. https://doi.org/10.1002/sec.1459

    Google Scholar 

  44. Elhoseny M, Yuan X, Yu Z et al (2015) Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun Lett 19:2194–2197. https://doi.org/10.1109/LCOMM.2014.2381226

    Article  Google Scholar 

  45. CubeSensors CubeSensors—Feel BETTER (2018) https://cubesensors.com/. Accessed 10 Feb 2018

  46. Yuan X, Elhoseny M, El-Minir HK, Riad AM (2017) A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. J Netw Syst Manag 25:21–46. https://doi.org/10.1007/s10922-016-9379-7

    Article  Google Scholar 

  47. Witten IH, Frank E, Hall MA et al (2016) Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Kaufmann, Morgan, pp 539–557

    Google Scholar 

  48. Emary E, Zawbaa HM (2016) Impact of chaos functions on modern swarm optimizers. PLoS ONE. https://doi.org/10.1371/journal.pone.0158738

    Google Scholar 

  49. Moody GB, Mark RG, Goldberger AL (2001) Physionet: a web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 20:70–75

    Article  Google Scholar 

  50. de Castro Ferreira MAP (2016) SHRAM-Smart Heart Rate and Activity Measurement. University of Porto. https://repositorioaberto.up.pt/bitstream/10216/84403/2/137861.pdf. Aaccessed 1 March 2017

  51. Tharwat A, Mahdi H, Elhoseny M, Hassanien AE (2018) Recognizing human activity in mobile crowdsensing environment using optimized k-NN algorithm. Expert Systems With Applications, 12 April 2018 (https://doi.org/10.1016/j.eswa.2018.04.017)

  52. Hosseinabadi AAR, Vahidi J, Saemi B, Sangaiah AK, Elhoseny M (2018) Extended genetic algorithm for solving open-shop scheduling problem. Soft Comput. https://doi.org/10.1007/s00500-018-3177-y

    Google Scholar 

  53. Tharwat A, Elhoseny M, Hassanien AE, Gabel T, Arun Kumar N (2018) Intelligent beziér curve-based path planning model using chaotic particle swarm optimization algorithm. In: Cluster Computing, Springer, March 2018, pp 1–22. (https://doi.org/10.1007/s10586-018-2360-3)

  54. El Aziz MA, Hemdan AM, Ewees AA, Elhoseny M, Shehab S, Hassanien AE, Xiong S (2017) Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. In: 2017 IEEE PES Power Africa conference, June 27–30, Accra-Ghana, IEEE, 2017, pp 115–120. (https://doi.org/10.1109/powerafrica.2017.7991209)

  55. Ewees AA, El Aziz MA, Elhoseny M (2017) Social-spider optimization algorithm for improving ANFIS to predict biochar yield. In: 8th international conference on computing, communication and networking technologies (8ICCCNT), July 3–5, Delhi, India, IEEE, 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elhoseny.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors to publish this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.K., El Desouky, A.I., Badawy, M.M. et al. EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm. Neural Comput & Applic 31, 1275–1300 (2019). https://doi.org/10.1007/s00521-018-3533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3533-y

Keywords

Navigation