Skip to main content
Log in

Projective synchronization for fractional-order memristor-based neural networks with time delays

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, the global projective synchronization for fractional-order memristor-based neural networks with multiple time delays is investigated via combining open loop control with the time-delayed feedback control. A comparison theorem for a class of fractional-order systems with multiple time delays is proposed. Based on the given comparison theorem and Lyapunov method, the synchronization conditions are derived under the framework of Filippov solution and differential inclusion theory. Several feedback control strategies are given to ensure the realization of complete synchronization, anti-synchronization and the stabilization for the fractional-order memristor-based neural networks with time delays. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Google Scholar 

  2. Strukov D, Snider G, Stewart D, Williams R (2008) The missing memristor found. Nature 453(7191):80–83

    Google Scholar 

  3. Anthes G (2011) Memristors: pass or fail ? Commun ACM 54:22–24

    Article  Google Scholar 

  4. Wu A, Zeng Z (2012) Exponential stabilization of memristive neural networks with time delays. IEEE Trans Neural Netw Learn Syst 23(12):1919–1929

    Article  Google Scholar 

  5. Zeng Z, Wang J (2008) Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks. IEEE Trans Syst Man Cybern Part B: Cybern 38(6):1525–1536

    Article  Google Scholar 

  6. Zeng Z, Wang J (2009) Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates. Neural Netw 22:651–657

    Article  MATH  Google Scholar 

  7. Zeng Z, Wang J, Liao X (2004) Stability analysis of delayed cellular neural networks described using cloning templates. IEEE Trans Circuits Syst I: Regul Pap 51(11):2313–2324

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang G, Shen Y, Quan Y, Sun J (2013) Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays. Inf Sci 232:386–396

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang X, Cao J, Yu W (2014) Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays. Cogn Neurodyn 8:239–249

    Article  Google Scholar 

  10. Li N, Cao J (2015) New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw 61:1–9

    Article  MATH  Google Scholar 

  11. Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824

    Article  MathSciNet  MATH  Google Scholar 

  12. Bao H, Park JH, Cao J (2016) Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay. IEEE Trans Neural Netw Learn Syst 27(1):190–201

    Article  MathSciNet  Google Scholar 

  13. Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 82(15):3024–3045

    Article  Google Scholar 

  14. Chee C, Xu D (2006) Chaos-based M-ary digital communication technique using controller projective synchronization. IEE Proc Circuits Dev Syst 153(4):357–360

    Article  Google Scholar 

  15. Wang S, Yu Y, Diao M (2010) Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Phys A 389(21):4981–4988

    Article  Google Scholar 

  16. Wang S, Yu Y, Wen G (2014) Hybrid projective synchronization of time-delayed fractional order chaotic systems. Nonlinear Anal: Hybrid Syst 11:129–138

    MathSciNet  MATH  Google Scholar 

  17. Peng G, Jiang Y, Chen F (2008) Generalized projective synchronization of fractional order chaotic systems. Phys A 387(14):3738–3746

    Article  Google Scholar 

  18. Zhou P, Zhu W (2011) Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal-Real 12(2):811–816

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen L, Chai Y, Wu R (2011) Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems. Phys Lett A 375(21):2099–2110

    Article  MATH  Google Scholar 

  20. Park JH (2008) Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J Comput Appl Math 213(1):288–293

    Article  MATH  Google Scholar 

  21. Park JH (2007) Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter. Chaos, Solitons, Fractals 34(5):1552–1559

    Article  MATH  Google Scholar 

  22. Lundstrom B, Higgs M, Spain W, Fairhall A (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11(11):1335–1342

    Article  Google Scholar 

  23. Kaslik E, Sivasundaram S (2011) Dynamics of fractional-order neural networks. In: Proceedings of the international conference on neural networks. California, USA, IEEE, p 611–618

  24. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  25. Yu J, Hu C, Jiang H (2012) \(\alpha\)-stability and \(\alpha\)-synchronization for fractional-order neural networks. Neural Netw 35:82–87

    Article  MATH  Google Scholar 

  26. Song C, Cao J (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498

    Article  Google Scholar 

  27. Zhang S, Yu Y, Wang H (2015) Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal: Hybrid Syst 16:104–121

    MathSciNet  MATH  Google Scholar 

  28. Chen L, Chai Y, Wu R, Ma T, Zhai H (2013) Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111(2):190–194

    Article  Google Scholar 

  29. Wang H, Yu Y, Wen G, Zhang S (2015) Stability analysis of fractional-order neural networks with time delay. Neural Process Lett 42(2):479–500

    Article  Google Scholar 

  30. Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109

    Article  MATH  Google Scholar 

  31. Wang H, Yu Y, Wen G, Zhang S (2015) Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154:15–23

    Article  Google Scholar 

  32. Bao H, Park JH, Cao J (2015) Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn 82(3):1343–1354

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu J, Hu C, Jiang H (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95

    Article  MATH  Google Scholar 

  34. Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  35. Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9

    Article  MATH  Google Scholar 

  36. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  37. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, New York

    MATH  Google Scholar 

  38. Lakshmikantham V, Leela S, Devi J (2009) Theory of fractional dynamic systems. Cambridge Scientific Publishers, Cambridge

    MATH  Google Scholar 

  39. Li C, Deng W (2007) Remarks on fractional derivatives. App Math Comput 187:777–784

    Article  MathSciNet  MATH  Google Scholar 

  40. Bhalekar S, Gejji V (2011) A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order. Fract Calc Appl Anal 1(5):1–9

    Google Scholar 

  41. Aubin J, Frankowska H (1990) Set-valued analysis. Birkhäauser, Boston

    MATH  Google Scholar 

  42. Filippov A (1988) Differential equations with discontinuous right-hand side. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  43. Aguila-Camacho N, Duarte-Mermoud M, Gallegos J (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957

    Article  MathSciNet  Google Scholar 

  44. Gu Y, Yu Y, Wang H (2016) Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J Franklin Inst 353:3657–3684

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao J, Wang J, Park JH, Shen H (2015) Memory feedback controller design for stochastic Markov jump distributed delay systems with input saturation and partially known transition rates. Nonlinear Anal Hybrid Syst 15:52–62

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant (No. 11371049 and No. 61772063) and the Fundamental Research Funds for the Central Universities under Grant No. 2017YJS194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Yu, Y. & Wang, H. Projective synchronization for fractional-order memristor-based neural networks with time delays. Neural Comput & Applic 31, 6039–6054 (2019). https://doi.org/10.1007/s00521-018-3391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3391-7

Keywords

Navigation