Skip to main content
Log in

An efficient local search for partial vertex cover problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an efficient local search framework, namely GRASP-PVC, is proposed to solve the minimum partial vertex cover problem. In order to speed up the convergence, a novel least-cost vertex selecting strategy is applied into GRASP-PVC. As far as we know, no heuristic algorithms have ever been reported to solve this momentous problem and we compare GRASP-PVC with a commercial integer programming solver CPLEX as well as a 2-approximation algorithm on two standard benchmark libraries called DIMACS and BHOSLIB. Experimental results evince that GRASP-PVC finds much better partial vertex covers than CPLEX and the approximation algorithm on most instances. Additional experimental results also confirm the validity of the least-cost vertex selecting strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Karp RM (1972) Reducibility among combinatorial problems. Plenum Press, New York, pp 85–103

    Google Scholar 

  2. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235

    Article  MathSciNet  Google Scholar 

  3. Allan RB, Laskar R (1978) On domination and independent domination numbers of a graph. Discrete Math 23(2):73–76

    Article  MathSciNet  Google Scholar 

  4. Sherali HD, Rios M (1984) An air force crew allocation and scheduling problem. J Oper Res Soc 35(2):91–103

    Article  Google Scholar 

  5. Caprara A, Toth P, Vigo D, Fischetti M (1998) Modeling and solving the crew rostering problem. Oper Res 46(6):820–830

    Article  Google Scholar 

  6. Woodyatt LR, Stott KL, Wolf FE, Vasko FJ (1993) An application combining set covering and fuzzy sets to optimally assign metallurgical grades to customer orders. Fuzzy Sets Syst 53(1):15–25

    Article  Google Scholar 

  7. Pullan W, Hoos HH (2006) Dynamic local search for the maximum clique problem. J Artif Intell Res 25:159–185

    Article  Google Scholar 

  8. Khuri S, Bäck T (1994) An evolutionary heuristic for the minimum vertex cover problem. In: Genetic algorithms within the framework of evolutionary computation—proceedings of the KI-94 workshop, pp 86–90

  9. Aggarwal CC, Orlin JB, Tai RP (1997) Optimized crossover for the independent set problem. Oper Res 45(2):226–234

    Article  MathSciNet  Google Scholar 

  10. Andrade DV, Resende MG, Werneck RF (2012) Fast local search for the maximum independent set problem. J Heuristics 18(4):525–547

    Article  Google Scholar 

  11. Barbosa VC, Campos LC (2004) A novel evolutionary formulation of the maximum independent set problem. J Comb Optim 8(4):419–437

    Article  MathSciNet  Google Scholar 

  12. Kearns MJ (1990) The computational complexity of machine learning. MIT Press, Cambridge

    Google Scholar 

  13. Charikar M, Khuller S, Mount DM, Narasimhan G (2001) Algorithms for facility location problems with outliers. In: Proceedings of the twelfth annual ACM-SIAM symposium on discrete algorithms, pp 642–651

  14. Bläser M (2003) Computing small partial coverings. Inf Process Lett 85(6):327–331

    Article  MathSciNet  Google Scholar 

  15. Bar-Yehuda R (2001) Using homogeneous weights for approximating the partial cover problem. J Algorithms 39(2):137–144

    Article  MathSciNet  Google Scholar 

  16. Demaine ED, Fomin FV, Hajiaghayi M, Thilikos DM (2005) Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans Algorithms (TALG) 1(1):33–47

    Article  MathSciNet  Google Scholar 

  17. Demaine ED, Fomin FV, Hajiaghayi M, Thilikos DM (2005) Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J ACM (JACM) 52(6):866–893

    Article  MathSciNet  Google Scholar 

  18. Gandhi R, Khuller S, Srinivasan A (2004) Approximation algorithms for partial covering problems. J Algorithms 53(1):55–84

    Article  MathSciNet  Google Scholar 

  19. Bshouty NH, Burroughs L (1998) Massaging a linear programming solution to give a 2-approximation for a generalization of the vertex cover problem. In: STACS 98, pp 298–308

  20. Hochbaum DS (1998) The t-vertex cover problem: extending the half integrality framework with budget constraints. In: Approximation algorithms for combinatorial optimization, pp 111–122

    Chapter  Google Scholar 

  21. Bar-Yehuda R (2001) Using homogeneous weights for approximating the partial cover problem. J Algorithms 39(2):137–144

    Article  MathSciNet  Google Scholar 

  22. Halperin E, Srinivasan A (2002) Improved approximation algorithms for the partial vertex cover problem. In: Approximation algorithms for combinatorial optimization, pp 161–174

    Chapter  Google Scholar 

  23. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877

    Article  Google Scholar 

  24. Li X, Yin M (2014) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734

    Article  Google Scholar 

  25. Li X, Wang J, Yin M (2014) Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput Appl 24(6):1233–1247

    Article  Google Scholar 

  26. Li X, Yin M, Ma Z (2011) Hybrid differential evolution and gravitation search algorithm for unconstrained optimization. Int J Phys Sci 6(25):5961–5981

    Google Scholar 

  27. Feo TA, Resende MG (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8(2):67–71

    Article  MathSciNet  Google Scholar 

  28. Feo TA, Resende MG (1995) Greedy randomized adaptive search procedures. J Glob Optim 6(2):109–133

    Article  MathSciNet  Google Scholar 

  29. Xu K, Boussemart F, Hemery F, Lecoutre C (2007) Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artif Intell 171(8):514–534

    Article  MathSciNet  Google Scholar 

  30. Johnson DS, Trick MA (1996) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11–13, 1993, vol 26. American Mathematical Soc

  31. Guo P, Wang J, Li B, Lee S (2014) A variable threshold-value authentication architecture for wireless mesh networks. J Internet Technol 15:929–936

    Google Scholar 

  32. Zhangjie F, Xingming S, Qi L, Lu Z, Jiangang S (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98-B(1):190–200

    Article  Google Scholar 

  33. Li R, Hu S, Wang Y, Yin M (2016) A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem. Neural Comput Appl. doi:10.1007/s00521-015-2172-9

    Article  Google Scholar 

  34. Wang Y, Cai S, Yin M (2016) Two efficient local search algorithms for maximum weight clique problem. In: Proceedings of the thirtieth AAAI conference on artificial intelligence

  35. Wang Y, Ouyang D, Zhang L, Yin M (2015) A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Sci China Inf Sci. doi:10.1007/s11432-015-5377-8

    Article  Google Scholar 

  36. Cai S, Lin J, Su K (2015) Two weighting local search for minimum vertex cover. In: Twenty-ninth AAAI conference on artificial intelligence

  37. Wang Y, Li R, Zhou Y, Yin M (2016) A path cost-based GRASP for minimum independent dominating set problem. Neural Comput Appl. doi:10.1007/s00521-016-2324-6

    Article  Google Scholar 

  38. Zhou Y, Zhang H, Li R, Wang J (2016) Two local search algorithms for partition vertex cover problem. J Comput Theor Nanosci 13:743–751

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this paper wish to extend their sincere gratitude to all anonymous reviewers for their efforts. This work was supported in part by National Natural Science Foundation of China (under Grant Nos. 61503074 and 61402070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, Y., Gao, J. et al. An efficient local search for partial vertex cover problem. Neural Comput & Applic 30, 2245–2256 (2018). https://doi.org/10.1007/s00521-016-2800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2800-z

Keywords

Navigation