Skip to main content
Log in

An evolutionary framework in modelling of multi-output characteristics of the bone drilling process

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

For the improvement of economic and environmental performance of bone drilling operations, the optimum value of the spindle speed and feed rate must be known. This is because the input spindle speed is an important factor of energy consumption and with its approximate value known in optimization of output characteristics of bone drilling operations may result in significant energy savings. Optimization of multi-output characteristics of the bone drilling process is possible, if the relationships between the outputs and the inputs are known. Therefore, this study forms the strong basis for development of the models for the three output characteristics (maximum temperature, maximum force and maximum average surface roughness) for the bone drilling operation performed on the bovine bone. Experimental studies are conducted to measure these three outputs based on the spindle speed and feed rate. The validation of the formulated models is done based on the root-mean-square error, coefficient of determination, relative error, multi-objective error and mean absolute percentage error. The relationships between the three outputs and the inputs are further revealed by the 2-D analysis on the models. The findings from these relationships can be used for the predictive monitoring the bone drilling operation. The work concludes with discussion of environmental implications arising from the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek BT (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42:159–166

    Article  Google Scholar 

  2. Garg A, Bhalerao Y, Tai K (2013) Review of empirical modelling techniques for modelling of turning process. Int J Model Identif Control 20:121–129

    Article  Google Scholar 

  3. Garg A, Tai K (2012) Review of genetic programming in modeling of machining processes. Modelling, identification & control (Icmic). In: 2012 Proceedings of international conference on Ieee. pp 653–658

  4. Mukherjee I, Ray PK (2006) A Review of optimization techniques in metal cutting processes. Comput Ind Eng 50:15–34

    Article  Google Scholar 

  5. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit U (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46:445–464

    Article  Google Scholar 

  6. Udiljak T, Ciglar D, Skoric S (2007) Investigation into bone drilling and thermal bone necrosis. Adv Prod Eng Manag 2:103–112

    Google Scholar 

  7. Hillery MT, Shuaib I (1999) Temperature effects in drilling of human and bovine bone. J Mater Process Technol 92–93:302–308

    Article  Google Scholar 

  8. Lee J, Ozdoganlar OB, Rabin Y (2012) An experimental investigation on thermal exposure during bone drilling. Med Eng Phys 34(10):1510–1520

    Article  Google Scholar 

  9. Karaca F, Aksakal B, Kom M (2011) Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys 33(10):221–227

    Article  Google Scholar 

  10. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128:71–77

    Article  Google Scholar 

  11. Lundskog J (1972) Heat and bone tissue, scand. J Plast Reconstr Surg Suppl 9:1–80

    Google Scholar 

  12. Deng J (1989) Introduction to grey system. J. Grey Syst 1(1):1–24

    MathSciNet  MATH  Google Scholar 

  13. Pandey RK, Panda SS (2013) Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. J Intell Manuf. doi:10.1007/s10845-013-0844-9

    Google Scholar 

  14. Pandey RK, Panda SS (2014) Optimization of bone drilling parameters using grey-based fuzzy algorithm. Measurement 47:386–392

    Article  Google Scholar 

  15. Pandey RK, Panda SS (2014) A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology. Proc Inst Mech Eng H J Eng Med 228:1135–1145

    Article  Google Scholar 

  16. Pandey RK, Panda SS (2015) Multi-performance optimization of bone drilling using Taguchi method based on membership function. Measurement 59:9–13

    Article  Google Scholar 

  17. Bhushan RK (2013) Optimization of cutting parameters for minimizing energy consumption and maximizing tool life during machining of al alloy sic particle composites. J Clean Prod 39:242–254

    Article  Google Scholar 

  18. Kant G, Sangwan KS (2014) Prediction and optimization of machining parameters for minimizing energy consumption and surface roughness in machining. J Clean Prod 83:151–164

    Article  Google Scholar 

  19. Alam K, Mitrofanov AV, Silberschmidt VV (2009) Measurements of surface roughness in conventional and ultrasonically assisted bone drilling. Am J Biomed Sci 1(4):312–320

    Article  Google Scholar 

  20. Panda BN, Garg A, Shankhwar K (2016) Empirical investigation of environmental characteristic of 3-D additive manufacturing process based on slice thickness and part orientation. Measurement 86:293–300

    Article  Google Scholar 

  21. Garg A, Panda B, Shankhwar K (2016) Investigation of the joint length of weldment of environmental-friendly magnetic pulse welding process. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8634-0

  22. Panda BN, Bahubalendruni MR, Biswal BB (2014) Comparative evaluation of optimization algorithms at training of genetic programming for tensile strength prediction of FDM processed part. Procedia Materials Science 5:2250–2257

    Article  Google Scholar 

  23. Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87–112

    Article  Google Scholar 

  24. Garg A, Lam JSL, Gao L (2015) Energy conservation in manufacturing operations: modelling the milling process by a new complexity-based evolutionary approach. J Clean Prod 108:34–45

    Article  Google Scholar 

  25. Panda B, Garg A, Jian Z, Heidarzadeh A, Gao L (2016) Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed. Front Mech Eng. doi:10.1007/s11465-016-0393

    Google Scholar 

  26. Garg A, Panda BN, Zhao DY, Tai K (2016) Framework based on number of basis functions complexity measure in investigation of the power characteristics of direct methanol fuel cell. Chemometr Intell Lab Syst 155:7–18

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Shantou University Scientific Research Funded Project (Grant No. NTF 16002). This project is also supported by National Natural Science Foundation of China (61502291), the Cultivation Project for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province (YQ2015070) and the Characteristic Innovation Project in Higher Education Institutions of Guangdong Province (2015GXJK037, 2015KTSCX039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Panda.

Ethics declarations

Conflict of interest

Authors would like to declare that there is no conflict of interests with any third party.

Appendix

Appendix

$$\begin{aligned} &{\text{Maximum temperature}}_{\text{GP}} = 55.1011 + \left( {2.4727} \right)*\left( {{ \tan }\left( {{ \cos }\left( {x_{2} } \right)} \right)} \right) \\ & \quad + \left( { - 2.525} \right)*\left( {{ \cos }\left( {\left( {\left( {x_{1} } \right) + \left( {\left( {7.744684} \right)} \right)} \right) + \left( {x_{1} } \right)} \right)} \right) \\ & \quad + \left( { - 0.26165} \right)*\left( {{ \sin }\left( {{ \tanh }\left( {{ \sin }\left( {\left( {{ \cos }\left( {x_{2} } \right)} \right) + \left( {{ \cos }\left( {x_{2} } \right)} \right)} \right)} \right)} \right)} \right) + \left( { - 0.013513} \right) \\ & \quad *\left( {\left( {\left( {{ \sin }\left( {{ \cos }\left( {x_{2} } \right)} \right)} \right) + \left( {\left( {\left( {{ \cos }\left( {x_{1} } \right)} \right) + \left( {\left( {7.744684} \right)} \right)} \right) + \left( {x_{1} } \right)} \right)} \right)*\left( {{ \sin }\left( {\left( {x_{2} } \right) + \left( {{ \cos }\left( {x_{2} } \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {0.68269} \right)*\left( {{ \tanh }\left( {\left( {{ \tanh }\left( {{ \sin }\left( {x_{1} } \right)} \right)} \right) + \left( {{ \cos }\left( {\left( {x_{1} } \right) + \left( {x_{2} } \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( { - 0.11163} \right)*\left( {\left( {{ \sin }\left( {\left( {x_{1} } \right) + \left( {{ \tan }\left( {{ \cos }\left( {x_{2} } \right)} \right)} \right)} \right)} \right) + \left( {x_{1} } \right)} \right) \\ \end{aligned}$$
(6)
$$\begin{aligned} &{\text{Maximum thrust force}}_{\text{GP}} = - 26.7024 + \left( {0.35454} \right)*\left( {\left( {\tan \left( {x_{1} } \right)} \right)*\left( {\tanh \left( {x_{1} } \right)} \right)} \right) \\ & \quad + \left( {0.011571} \right)*\left( {\left( {\left( {\left( {x_{1} } \right)*\left( {\cos \left( {x_{2} } \right)} \right)} \right) + \left( {\left( {\tanh \left( {\sin \left( {\left( {8.500942} \right)} \right)} \right)} \right) - \left( {x_{2} } \right)} \right)} \right)*\left( {\cos \left( {x_{1} } \right)} \right)} \right) \\ & \quad + \left( { - 0.59937} \right)*\left( {\left( {\left( {8.500942} \right)} \right)*\left( {\cos \left( {x_{2} } \right)} \right)} \right) \\ & \quad + \left( {0.87393} \right)*\left( {x_{1} } \right) + \left( { - 0.0001998} \right)*\left( {\left( {x_{1} } \right)*\left( {\left( {\left( {\tanh \left( {x_{1} } \right)} \right) - \left( {\left( {x_{2} } \right) - \left( {x_{1} } \right)} \right)} \right)*\left( {\cos \left( {x_{1} } \right)} \right)} \right)} \right) \\ & \quad + \left( { - 0.1258} \right)*\left( {\tan \left( {\left( {x_{1} } \right)*\left( {\left( {x_{2} } \right)*\left( {\cos \left( {x_{1} } \right)} \right)} \right)} \right)} \right) \\ \end{aligned}$$
(7)
$$\begin{aligned}& {\text{Maximum average surface roughness}} _{\text{GP}} = 1.2153 + \left( { - 0.016092} \right) \\ & \quad *\left( {\left( {\left( {\tan \left( {\tan \left( {\left( {x_{2} } \right) - \left( {\left( {5.304303} \right)} \right)} \right)} \right)} \right) - \left( {\cos \left( {\left( {\left( {x_{2} } \right) + \left( {\left( { - 5.107464} \right)} \right)} \right) + \left( {x_{2} } \right)} \right)} \right)} \right)} \right. \\ & \quad \left. { - \left( {\cos \left( {\left( {x_{2} } \right) - \left( {\left( {\left( {x_{2} } \right) - \left( {\left( {5.304303} \right)} \right)} \right)*\left( {\sin \left( {x_{1} } \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {0.36557} \right)*\left( {\sin \left( {\cos \left( {\left( {x_{2} } \right) - \left( {\left( {5.304303} \right)} \right)} \right)} \right)} \right) + \left( { - 0.00069953} \right) \\ & \quad *\left( {\left( {x_{1} } \right)*\left( {\tan \left( {x_{2} } \right)} \right)} \right) + \left( { - 3.6113e - 005} \right) \\ & \quad *\left( {\left( {\left( {x_{1} } \right) - \left( {\left( {x_{2} } \right) - \left( {\cos \left( {\left( {x_{2} } \right) - \left( {\left( {5.304303} \right)} \right)} \right)} \right)} \right)} \right) - \left( {\left( {5.304303} \right)} \right)} \right) \\ & \quad + \left( { - 0.0056038} \right)*\left( {\left( {x_{1} } \right)*\left( {\sin \left( {\cos \left( {\left( {x_{1} } \right) + \left( {\left( { - 1.501624} \right)} \right)} \right)} \right)} \right)} \right) + \left( {0.02242} \right)*\left( {\tan \left( {x_{2} } \right)} \right) \\ \end{aligned}$$
(8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A., Shankhwar, K., Jiang, D. et al. An evolutionary framework in modelling of multi-output characteristics of the bone drilling process. Neural Comput & Applic 29, 1233–1241 (2018). https://doi.org/10.1007/s00521-016-2632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2632-x

Keywords

Navigation