Skip to main content

Advertisement

Log in

Optimization of 5.5-GHz CMOS LNA parameters using firefly algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents an optimal design of low noise amplifier (LNA) using an efficient swarm-based optimizer called firefly algorithm (FA). Many researchers have used firefly algorithm to solve various nonlinear engineering problems and reported outstanding results. In view of this, FA is implemented for the first time in this paper to optimize the parameters of LNA like gain and noise figure (NF). Two case studies have been performed which includes the minimization of NF and maximization of gain. Optimization of these two parameters has been carried out by considering each parameter as a single objective function. Penalty factor method is considered for handling the constraints. Other parameters of LNA like power consumption, linearity, and stability are also discussed for both the cases. The designed LNA has a cascode structure with inductive source degeneration topology and is implemented in UMC 0.18-μm CMOS technology using CADENCE software. LNA is designed for 5.5-GHz frequency. The performance of FA in optimizing the parameters of LNA is also compared with the performance of other similar contemporary algorithms like particle swarm optimization (PSO), human behavior PSO (HB-PSO), backtracking search algorithm, and cuckoo search algorithm (CSA). The optimized value of LNA parameter using FA and other algorithms when simulated in MATLAB environment is compared with the simulated result of CADENCE. Statistical analysis is also performed for each case study, and the results are compared with the above-mentioned optimization algorithms. Simulation results, comparative study, and statistical analysis confirm the superiority of FA over other methods in terms of its computational efficiency, consistency, and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lee TH (2000) X “5-GHz CMOS wireless LANs”. IEEE Trans Microw Theory Tech 50:268–280

    Article  Google Scholar 

  2. Kotti M, Sallem A, Bougharriou M, Fakhfakh M, Loulou M (2010) Optimizing CMOS LNA circuits through multi-objective meta-heuristics. In: XIth international workshop on symbolic and numerical methods modelling and applications to circuit design, pp 1–6

  3. Fakhfakh M, Cooren Y, Sallem A, Loulou M, Siarry P (2010) Analog circuit design optimization through the particle swarm optimization technique. Analog Integr Circ Sig Process 63:71–82

    Article  Google Scholar 

  4. Shams M, Rashedi E, Hakimi A (2015) Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier. Appl Math Comput 258:436–453

    MathSciNet  MATH  Google Scholar 

  5. Nguyen N, Lim C, Jain LC, Balas VE (2009) Theoretical advances and applications of intelligent paradigms. J Intell Fuzzy Syst 20:1–2

    Google Scholar 

  6. Timar DB, Balas VE(2007) Decision-making in human resources selection methodology. In: 2nd IEEE international workshop on soft computing applications, 21–23 August, Gyula, Hungary–Oradea, Romania pp 123–127

  7. Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79:157–181

    Article  MathSciNet  MATH  Google Scholar 

  8. Kaveh A, Share MAM, Moslehi M (2013) Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mech 224:85–107

    Article  MATH  Google Scholar 

  9. Khong SZ, Nesic D, Manzie C, Tan Y (2013) Multidimensional global extremum seeking via the DIRECT optimization algorithm. Automatica 49:1970–1978

    Article  MATH  Google Scholar 

  10. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  11. Aarts E, Lenstra K (2003) Local search in combinatorial optimization. Princeton University Press, Princeton

    MATH  Google Scholar 

  12. Taherzadeh M, Lotfi R, Zare H, Shoaei O (2003) Design optimization of analog integrated circuits using simulation-based genetic algorithm. Proc IEEE Int Symp Signals Circuits 1:73–76

    Google Scholar 

  13. Kirkpatric S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. J Sci 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  14. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29–41

    Article  Google Scholar 

  15. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  16. Hao L, Gang X, Ding G, Sun Y-B (2014) Human Behavior-Based particle swarm optimization. Sci World J 2014:1–14

    Article  Google Scholar 

  17. González E, Álvarez O, Díaz Y, Parra C, Bustacara C (2005) BSA: a complete coverage algorithm. In: Proceedings of the IEEE international conference on robotics and automation, pp 2040–2044

  18. Mohanty CS, Khuntia PS, Mitra D (2014) A modified bacterial foraging optimized PID controller for time-delay systems. Int J Adv Intell Paradig 6(4):255–271

    Article  Google Scholar 

  19. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inform Sci 179:2232–2248

    Article  MATH  Google Scholar 

  20. Yang XS, Deb S (2009) Cuckoo Search via Levy Flights. In: World congress on nature and biologically inspired computing, pp 210–214

  21. Li Y (2009) A simulation-based evolutionary approach to LNA circuit design optimization. Appl Math Comput 209:57–67

    MathSciNet  MATH  Google Scholar 

  22. Karkhanehchia MM, Naderib S, Jafaria F, Majidifarc S (2014) Design and optimization of a very low noise amplifier using particle swarm optimization technique. Int J Eng Technol Sci 2(2):122–131

    Google Scholar 

  23. Shin LW, Chin NS, Marzuki A (2013) 5 GHz MMIC LNA design using particle swarm optimization. Inf Manag Bus Rev 5(6):257–262

    Google Scholar 

  24. Yang XS (2008) Firefly algorithm, Nature-inspired metaheuristic algorithms, vol 20. Wiley Online, Library, pp 79–90

  25. Razavi B (1997) RF Microelectronics. PTR, Prentice-Hall

    Google Scholar 

  26. Ellinger F (2007) Radio frequency integrated circuits and technologies, 2nd edn. Springer, New York

    Google Scholar 

  27. Rajan A, Malakar T (2015) Optimal reactive power dispatch using hybrid Nelder-Mead simplex based firefly algorithm. Int J Electr Power Energy Syst 66:9–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kumar.

Appendix

Appendix

1.1 Optimization parameter settings

See Table 9.

Table 9 Optimization parameter settings for case-1 and case-2

1.2 Simulation environment (CADENCE platform)

See Table 10.

Table 10 Simulation environment of CADENCE

1.3 Flowchart of other algorithms

See Figs. 21, 22, 23, and 24.

Fig. 21
figure 21

Flowchart of HB-PSO

Fig. 22
figure 22

Flowchart of BSA

Fig. 23
figure 23

Flowchart of cuckoo search algorithm

Fig. 24
figure 24

Flowchart of particle swarm optimization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Rajan, A., Talukdar, F.A. et al. Optimization of 5.5-GHz CMOS LNA parameters using firefly algorithm. Neural Comput & Applic 28, 3765–3779 (2017). https://doi.org/10.1007/s00521-016-2267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2267-y

Keywords

Navigation