Skip to main content
Log in

Local extreme learning machine: local classification model for shape feature extraction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The shape feature of an object represents the geometrical information which plays an important role in the image understanding and image retrieval. How to get an excellent shape feature that has rotation, scaling and translation (RST) invariance is a problem in this field. This paper proposed a novel local extreme learning machine (LELM) classification algorithm to extract the shape features. LELM finds nearest neighbors of the testing set from the original training set and trains a local classification model. The shape feature is represented by an analytic decision function with a radial basis function (RBF) kernel obtained by LELM. Our method has the following advantages: (1) LELM not only keeps the local structure of the samples, but also solves the imbalance problem between variance and bias. (2) Features obtained by the RBF kernel are RST invariant. (3) LELM is more robust against the noise and fragmentation compared to other methods. We also demonstrate the performance of the proposed method in image retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gonzalez Rafael C, Woods Richard E (2010) Digital image processing, 3rd edn. Electronic Industry Press, Beijing

    Google Scholar 

  2. ISO/IEC JTC1/SC29/WG11N6828, MPEG-7 Overview (version 10)

  3. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit 37(1):1–19

    Article  Google Scholar 

  4. Mokhtarian F (1995) Silhouette-based isolated object recognition through curvature scale space. IEEE Trans Pattern Anal Mach Intell 17(5):539–544

    Article  Google Scholar 

  5. Mokhtarian F, Bober M (2011) Curvature scale space representation: theory, applications, and MPEG-7 standardization. Springer Publishing Company, Incorporated

  6. Abbasi S, Mokhtarian F, Kittler J (1999) Curvature scale space image in shape similarity retrieval. Multimed Syst 7(6):467–476

    Article  Google Scholar 

  7. Lien JM, Amato NM (2008) Approximate convex decomposition of polyhedra and its applications. Comput Aided Geom Des 25(7):503–522

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu H, Liu W, Latecki LJ (2010) Convex shape decomposition[C]//Computer Vision and Pattern Recognition (CVPR), In: 2010 IEEE conference on IEEE, pp 97–104

  9. Adamek T, O’Connor NE (2004) A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans Circuits Syst Video Technol 14(5):742–753

    Article  Google Scholar 

  10. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Article  Google Scholar 

  11. Hua J, Lai Z, Dong M, Gu X, Qin H (2008) Geodesic distance-weighted shape vector image diffusion. IEEE Trans Vis Comput Graph 14(6):1643–1650

    Article  Google Scholar 

  12. Gorelick L, Galun M, Sharon E et al (2006) Shape representation and classification using the poisson equation. IEEE Trans Pattern Anal Mach Intell 28(12):1991–2005

    Article  Google Scholar 

  13. Cohen-Steiner D, Alliez P, Desbrun M (2004, August) Variational shape approximation. In ACM Transactions on Graphics (TOG). ACM, vol 23, No. 3, pp 905–914

  14. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  15. Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  16. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  17. Mori G, Belongie S, Malik J (2005) Efficient shape matching using shape contexts. IEEE Trans Pattern Anal Mach Intell 27(11):1832–1837

    Article  MATH  Google Scholar 

  18. Van Nguyen H, Porikli F (2013) Support vector shape: a classifier-based shape representation. IEEE Trans Pattern Anal Mach Intell 35(4):970–982

    Article  Google Scholar 

  19. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  20. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  22. Zong W, Huang GB (2011) Face recognition based on extreme learning machine. Neurocomputing 74(16):2541–2551

    Article  Google Scholar 

  23. Li MB, Huang GB, Saratchandran P, Sundararajan N (2005) Fully complex extreme learning machine. Neurocomputing 68:306–314

    Article  Google Scholar 

  24. Huang GB, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1):155–163

    Article  Google Scholar 

  25. Bai Z, Huang GB, Wang D et al (2014) Sparse extreme learning machine for classification. IEEE Trans Cybern 44(10):1858–1870

    Article  Google Scholar 

  26. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529

    Article  Google Scholar 

  27. Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 6(3):376–390

    Article  Google Scholar 

  28. Dalal N, Triggs B (2005, June) Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on IEEE, vol 1, pp. 886–893

  29. Cover TM (1968) Estimation by the nearest neighbor rule. IEEE Trans Inf Theory 14(1):50–55

    Article  MATH  Google Scholar 

  30. Sharvit D, Chan J, Tek H, Kimia BB (1998, June) Symmetry-based indexing of image databases. In Content-Based Access of Image and Video Libraries, 1998. In: Proceedings. IEEE workshop on IEEE, pp 56–62

  31. Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26(5):550–571

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China Nos. 61173163, 51105052, 61370200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Feng, L. & Wu, B. Local extreme learning machine: local classification model for shape feature extraction. Neural Comput & Applic 27, 2095–2105 (2016). https://doi.org/10.1007/s00521-015-2008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2008-7

Keywords

Navigation