Skip to main content
Log in

Research for AQM based on MiniMax method

Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an active queue management (AQM) controller for a class of linearized congestion router network systems in the presence of unknown time-varying link number and disturbances. Based on the idea of MiniMax method in game theory, a novel output feedback controller is specially designed with the improved robustness to the disturbances and parameter variations. By applying the proposed algorithm in the terms of LMIs, the worst effect caused by the disturbance can be evaluated using MiniMax method, and mean while the controller is optimally designed to deal with the system under the worst condition. Finally, the effectiveness of presented AQM method is verified on the software platform of NS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jacobson FS (1993) Random early detection gateways for congestion avoidance. IEEE/ACM Trans Netw 4:397–413

    Google Scholar 

  2. Hollot CV, Misra V (2001) On designing improved controllers for AQM routers supporting TCP flows. In: Proceedings INFOCOM’01.Anchorage, USA: IEEE Computer Society pp 1726–1734

  3. Fan Yanfei, Ren Fengyuan, Lin Chuang (2003) Design a PID controller for active queue management. In: Proceeding of the 8th IEEE international symposium on computers and communication, Antalya, Turkey pp 985–990

  4. Misra V, Gong W, Towsley D (2000) Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. In: Proceeding SIGCOMM pp 151–160

  5. Hollot C, Misra V, Towsley D, Gong W (2002) Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Trans Autom Control 47(6):945–959

    Article  MathSciNet  Google Scholar 

  6. Hollot C, Misra V, Towsley D, Gong W (2001) A control theoretic analysis of RED. Proc INFOCOM 3:1510–1519

    Google Scholar 

  7. Kelly F (2001) Mathematics unlimited—2001 and beyond. In: Schmid W, Engquist B (eds) Mathematical modelling of the internet. Springer, Berlin

    Google Scholar 

  8. Johari R, Tan D (2001) End-to-end congestion control for the internet: delays and stability. IEEE/ACM Trans Netw 9(6):832

    Article  Google Scholar 

  9. Massoulie L (2000) Stability of distributed congestion control with heterogenous feedback delays. Microsoft Res

  10. Vinnicombe G (2001) On the stability of end-to-end congestion control for the internet. Technical Report, University of Cambridge, Cambridge

    Google Scholar 

  11. Paganini F (2002) A global stability result in network flow control. Syst Control Lett 46:165–172

  12. Quet PF, Ozbay H (2004) On the design of AQM supporting TCP flows using robust control theory. IEEE Trans Autom Control 6(49):1031–1036

    Article  MathSciNet  Google Scholar 

  13. Hollot CV, Misra V, Towsley D, Gong WB (2002) Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Trans Autom Control 6(47):945–959

    Article  MathSciNet  Google Scholar 

  14. Kim KB (2006) Design of feedback controls supporting TCP based on the state-space approach. IEEE Trans Autom Control 7(51):1086–1099

    Article  Google Scholar 

  15. Chavan Kanchan, Kumar Ram G, Belur Madhu N, Karandikar Abhay (2011) Robust active queue management for wireless networks. IEEE Trans Control Syst Technol 19(6):1630–1638

    Article  Google Scholar 

  16. Wang Ping, Chen Hong, Yang Xiaoping, Ma Yan (2012) Design and analysis of a model predictive controller for active queue management. ISA Trans 51:120–131

    Article  Google Scholar 

  17. Ghaoui El, Laurent Eric Feron, Balakrishnan Venkataramanan (1994) Linear matrix inequalities in system and control theory, vol 15. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  18. Liu M, Shi P (2013) Sensor fault estimation and tolerant control for It $^$ stochastic systems with simultaneous input and output disturbances. Automatica 49(5):1242–1250

    Article  MathSciNet  Google Scholar 

  19. Wang B, Shi P, Karimi H, Song Y, Wang J (2013) Robust H α synchronization of a hyper-chaotic system with disturbance input. Nonlinear Anal Real World Appl 14:1487–1495

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang B, Shi P, Karimi H, Wang J (2012) H α robust controller design for the synchronization of master-slave chaotic systems with disturbance input. Model Identif Control 33(1):27–34

    Article  Google Scholar 

  21. Jiang Canghua, Teo Kok Lay, Loxton Ryan, Duan Guang-Ren (2012) A neighboring extremal solution for optimal switched impulsive control problems with large perturbations. Int J Innov Comput Inf Control 8(9):6235–6257

    MathSciNet  Google Scholar 

  22. Liu Pin-Lin (2011) Robust stability for neutral time-varying delay systems with non-linear perturbations. Int J Innov Comput Inf Control 7(10):5749–5760

    Google Scholar 

  23. Tong S, Li Y, Liu Y (2011) Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans Syst Man Cybern Part B Cybern 41(6):1693–1704

    Article  MathSciNet  Google Scholar 

  24. Yung H, Nelson C, Ye C (1999) An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning. IEEE Trans Syst Man Cybern Part B Cybern 29(2):314–321

    Article  Google Scholar 

  25. Wang H, Chen B, Lin C (2012) Adaptive neural control for strict-feedback stochastic nonlinear systems with time-delay. Neurocomputing 77(1):267–274

    Article  Google Scholar 

  26. Wang H, Chen B, Lin C (2013) Adaptive neural tracking control for a class of perturbed pure-feedback nonlinear systems. Nonlinear Dyn 72(1–2):207–220

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang H, Chen B, Lin C (2013) Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans Cybern 43(6):2093–2104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Jing, Y. Research for AQM based on MiniMax method. Neural Comput & Applic 25, 1755–1760 (2014). https://doi.org/10.1007/s00521-014-1666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1666-1

Keywords

Navigation