Skip to main content
Log in

Decentralized backstepping output-feedback control for stochastic interconnected systems with time-varying delays using neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the decentralized adaptive output-feedback control problem for a class of interconnected stochastic strict-feedback uncertain systems described by It\(\hat{\hbox{o}}\) differential equation using neural networks. Compared with the existing literature, this paper removes the commonly used assumption that the interconnections are bounded by known functions multiplying unknown parameters, and all unknown interconnections are lumped in a suitable function which is compensated by only a neural network in each subsystem. So, the controller is simpler even than that for the strict-feedback systems described by the ordinary differential equation. Moreover, the circle criterion is applied to designing nonlinear observers for the estimates of system states. A simulation example is used to illustrate the effectiveness of control scheme proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bakule L (2008) Decentralized control: an overview. Annu Rev Control 32(1):87–98

    Article  MathSciNet  Google Scholar 

  2. Jain S, Khorrami F (1997) Decentralized adaptive control of a class of large-scale interconnected nonlinear systems. IEEE Trans Autom Control 42(2):136–157

    Article  MathSciNet  MATH  Google Scholar 

  3. Jain S, Khorrami F (1997) Decentralized adaptive output feedback design for large-scale nonlinear systems. IEEE Trans Autom Control 42(5):729–735

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiang ZP (2000) Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback. IEEE Trans Autom Control 45(11):2122–2128

    Article  MATH  Google Scholar 

  5. Jiang ZP, Repperger DW, Hill DJ (2001) Decentralized nonlinear output-feedback stabilization with disturbance attenuating. IEEE Trans Autom Control 46(10):1623–1629

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang ZP (2002) Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems. Automatica 38(8):1407–1415

    Article  MathSciNet  MATH  Google Scholar 

  7. Krishnamurthy P, Khorrami F (2003) Decentralized control and disturbance attenuation for large-scale nonlinear systems in generalized output-feedback canonical form. Automatica 39(11):1923–1933

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu XP, Huang JS (2001) Global decentralized robust stabilization for interconnected uncertain nonlinear systems with multiple input. Automatica 37(9):1435–1442

    Article  MATH  Google Scholar 

  9. Wen C, Zhou J, Wang W (2009) Decentralized adaptive backstepping stabilization of interconnected systems with dynamic input and output interactions. Automatica 45(1):55–67

    Article  MathSciNet  MATH  Google Scholar 

  10. Ye XD (1999) Decentralized adaptive regulation with unknown high-frequency-gain signs. IEEE Trans Autom Control 44(11):2072–2076

    Article  MATH  Google Scholar 

  11. Zhou J, Wen C (2008) Decentralized backstepping adaptive output tracking of interconnected nonlinear systems. IEEE Trans Autom Control 53(10):2378–2384

    Article  MathSciNet  Google Scholar 

  12. Xie S, Xie L (2000) Decentralized global robust stabilization of a class of interconnected minimum-phase nonlinear systems. Syst Control Lett 41(4):251–263

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi JY, Farrell JA (2001) Adaptive observer backstepping control using neural networks. IEEE Trans Neural Netw 12(5):1103–1112

    Article  Google Scholar 

  14. Ge SS, Hang CC, Lee TH, Zhang T (2001) Stable adaptive neural network control. Kluwer, Boston

    Google Scholar 

  15. Ge SS, Hong F, Lee TH (2004) Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans Syst Man Cybern Part B 34(1):499–516

    Article  MathSciNet  Google Scholar 

  16. Ge SS, Li GY, Lee TH (2003) Adaptive NN control of a class of strict-feedback discrete-time nonlinear systems. Automatica 39(5):807–819

    Article  MathSciNet  MATH  Google Scholar 

  17. Ge SS, Yang C, Lee TH (2008) Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Trans Neural Netw 19(9):1599–1614

    Article  Google Scholar 

  18. Han TT, Ge SS, Lee TH (2009) Adaptive neural control for a class of switched nonlinear systems. Syst Control Lett 58(2):109–118

    Article  MathSciNet  MATH  Google Scholar 

  19. Hua CC, Guan XP, Shi P (2007) Robust output feedback tracking control for time-delay nonlinear systems using neural network. IEEE Trans Neural Netw 18(2):495–505

    Article  Google Scholar 

  20. Kwan C, Lewis FL (2000) Robust backstepping control of nonlinear systems using neural networks. IEEE Trans Syst Man Cybern Part A 30(6):753–766

    Article  Google Scholar 

  21. Polycarpou MM (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Control 41(3):447–451

    Article  MathSciNet  MATH  Google Scholar 

  22. Polycarpou MM, Mears MJ (1998) Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators. Int J Control 70(3):363–384

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang D, Huang J (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Netw 16(1):195–202

    Article  Google Scholar 

  24. Zhang T, Ge SS, Hang CC (2000) Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36(12):1835–1846

    MathSciNet  MATH  Google Scholar 

  25. Zhang TP, Ge SS (2007) Adaptive neural control of mimo nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43(6):1021–1033

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen W, Li J (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Systems Man Cybern Part B Cybern 38(1):258–266

    Article  Google Scholar 

  27. Huang SN, Tan KK, Lee TH (2009) Neural network learning algorithm for a class of interconnected nonlinear systems. Neurocomputing 72(4–6):1071–1077

    Article  Google Scholar 

  28. Deng H, Krstić M (1997) Stochastic nonlinear stabilization-part I: a backstepping design. Syst Control Lett 32(3):143–150

    Article  MathSciNet  MATH  Google Scholar 

  29. Deng H, Krstić M (1999) Output-feedback stochastic nonlinear stabilization. IEEE Trans Autom Control 44(2):328–333

    MATH  Google Scholar 

  30. Deng H, Krstić M (2000) Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance. Syst Control Lett 39(3):173–182

    Article  MathSciNet  MATH  Google Scholar 

  31. Deng H, Krstić M, Williams R (2001) Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans Autom Control 46(8):1237–1253

    Article  MATH  Google Scholar 

  32. Fu Y, Tian Z, Shi S (2005) Output feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Trans Autom Control 50(6):847–851

    Article  MathSciNet  Google Scholar 

  33. Liu SJ, Zhang JF (2008) Output-feedback control of a class of stochastic nonlinear systems with linearly bounded unmeasurable states. Int J Robust Nonlinear Control 18(6):665–687

    Article  MathSciNet  Google Scholar 

  34. Liu SJ, Ge SS, Zhang JF (2008) Adaptive output-feedback control for a class of uncertain stochastic non-linear systems with time delays. Int J Control 81(8):1210–1220

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu SJ, Jiang ZP, Zhang JF (2008) Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems. Automatica 44(8):1944–1957

    Article  MathSciNet  Google Scholar 

  36. Liu YG, Zhang JF, Pan ZG (2003) Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index. Sci China (Ser F) 46(2):126–144

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu YG, Pan ZG, Shi SJ (2003) Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Trans Autom Control 48(3):509–514

    Article  MathSciNet  Google Scholar 

  38. Liu YG, Zhang JF (2006) Practical output-feedback risk-sensitive control for stochastic nonlinear systems under stable zero-dynamics. SIAM J Control Optim 45(3):885–926

    Article  MathSciNet  MATH  Google Scholar 

  39. Pan ZG, Basar T (1998) Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems. IEEE Trans Autom Control 43(8):1066–1083

    Article  MathSciNet  MATH  Google Scholar 

  40. Pan ZG, Basar T (1999) Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. SIAM J Control Optim 37(3):957–995

    Article  MathSciNet  MATH  Google Scholar 

  41. Tian J, Xie XJ (2007) Adaptive state-feedback stabilization for high-order stochastic non-linear systems with uncertain control coefficients. Int J Control 80(9):1503–1516

    Article  MathSciNet  MATH  Google Scholar 

  42. Xie XJ, Tian J (2007) State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics. Int J Robust Nonlinear Control 17(14):1343–1362

    Article  MathSciNet  MATH  Google Scholar 

  43. Xie XJ, Tian J (2009) Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica 45(1):126–133

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu ZJ, Xie XJ, Shi P, Xia YQ (2009) Backstepping controller design for a class of stochastic nonlinear systems with markovian switching. Automatica 45(4):997–1004

    Article  MathSciNet  MATH  Google Scholar 

  45. Arslan G, Basar T (2002) Risk-sensitive adaptive trackers for strict-feedback systems with output measurements. IEEE Trans Autom Control 47(10):1754–1758

    Article  MathSciNet  Google Scholar 

  46. Xie S, Xie L (2000) Decentralized stabilization of a class of interconnected stochastic nonlinear systems. IEEE Trans Autom Control 45(1):132–137

    Article  MATH  Google Scholar 

  47. Arslan G, Basar T (2003) Decentralized risk-sensitive controller design for strict-feedback systems. Syst Control Lett 50(5):383–393

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu SJ, Zhang JF, Jiang ZP (2007) Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica 43(2):238–251

    Article  MathSciNet  MATH  Google Scholar 

  49. Arcak M, Kokotović P (2001) Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37(12):1923–1930

    Article  MathSciNet  MATH  Google Scholar 

  50. Kuang J (2004) Applied inequality. Shangdong Science and Technology Press, Jinan

    Google Scholar 

  51. Park J, Sandberg IW (1998) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

  52. Ho HF, Wong YK, Rad AB (2008) Adaptive fuzzy approach for a class of uncertain nonlinear systems in strict-feedback form. ISA Trans 47(3):286–299

    Article  Google Scholar 

  53. Yang YS, Li TS, Wang XF (2006) Robust adaptive neural network control for strict-feedback nonlinear systems via small-gain approaches. Lect Notes Comput Sci 2006(3972):888–897

    Article  Google Scholar 

  54. Liu YJ, Wang W (2007) Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf Sci 177(18):3901–3917

    Article  MathSciNet  MATH  Google Scholar 

  55. Chen B, Tong SC, Liu XP (2007) Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping approach. Fuzzy Sets Syst 158(10):1097–1125

    Article  MathSciNet  MATH  Google Scholar 

  56. Li TS (2010) A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans Systems Man Cybernetics Part B Cybern 40(3):915–923

    Article  Google Scholar 

  57. Li TS (2010) Neural-network-based simple adaptive control of uncertain MIMO nonlinear systems. IET Control Theory Appl 4(9):1543–1557

    Article  MathSciNet  Google Scholar 

  58. Liu YJ, Wang W, Tong SC, Liu YS (2010) Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans Syst Man Cybern Part A Syst Hum 40(1):170–184

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their comments that improve the quality of the paper. This work was supported by the National Natural Science Foundation of P.R. China (60804021, 61072106, 61072139), the Program for New Century Excellent Talents in University (NCET-10-0665), the Fundamental Research Funds for the Central Universities (JY10000970001), and the China Postdoctoral Science Foundation funded project (20090461282, 201003666).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Chen.

Appendices

Appendix A: The proof of Theorem 1

Proof: Define μ i  = x i  − v i and \(\Uplambda_i(x_i,\mu_i)=J_i(x_i)-J_i(x_i-\mu_i)\). From this together with \(\Upphi_i(x_i)=H_iJ_i(x_i)\) by Assumption 3, it follows that

$$ \Upphi_i(x_i)-\Upphi_i(v_i)=H_i(J_i(x_i)-J_i(x_i-\mu_i))=H_i\Uplambda_i(x_i,\mu_i) $$
(47)
$$ \mu_i^{\rm T}=x_i^{\rm T}-(\hat{x}_i-K_iC_i\tilde{x}_i)^{\rm T}=\tilde{x}_i^{\rm T}(I+K_iC_i)^{\rm T} $$
(48)

and then, by the Mean Value Theorem, we have \( \Uplambda_i(x_i,\mu_i)=\int\nolimits_0^1\frac{\partial J_i(s)}{\partial s}|_{s=x_i-\tau_i\mu_i}\mu_i {\rm d}\tau_i \) which, together with Assumption 3, implies that

$$ \mu_i^{\rm T}\Uplambda_i(x_i,\mu_i)=\frac{1}{2}\mu_i^{\rm T}\left(\int_0^1\left[\frac{\partial J_i(s)}{\partial s}+\left(\frac{\partial J_i(s)}{\partial s}\right)^{\rm T}\right]_{s=x_i-\tau\mu_i}{\rm d}\tau\right)\mu_i\geq0. $$
(49)

Then, we have

$$ \tilde{x}_i^{\rm T}P_i(\Upphi_i(x_i)-\Upphi_i(v_i))=\tilde{x}_i^{\rm T}P_iH_i\Uplambda_i(x_i,\mu_i)=-\mu_i^{\rm T}\Uplambda_i(x_i,\mu_i)\leq 0. $$
(50)

Along the trajectory of (25), one has

$$ \begin{aligned} {{\mathcal{L}}}V_{i,0}= \,& b_i(\tilde{x}_i^{\rm T}P_i\tilde{x}_i)\tilde{x}_i^{\rm T}[(A_i+L_iC_i)^{\rm T}P_i+P_i(A_i+L_iC_i)]\tilde{x}_i\\ &\quad +2b_i(\tilde{x}_i^{\rm T}P_i\tilde{x}_i)\tilde{x}_i^{\rm T}P_i(\Upphi_i(x_i)-\Upphi_i(v_i))+2b_i(\tilde{x}_i^{\rm T}P_i\tilde{x}_i)\tilde{x}_i^{\rm T}P_i F_i\\ &\quad +2b_i{\rm Tr}\{G_i^{\rm T}(2P_i\tilde{x}_i\tilde{x}_i^{\rm T}P_i+\tilde{x}_i^{\rm T}P_i\tilde{x}_iP_i)G_i\}. \end{aligned} $$
(51)

Substituting (22) and (50) into (51) yields

$$ \begin{aligned} {{\mathcal{L}}}V_{i,0}&\leq-b_i(\tilde{x}_i^{\rm T}P_i\tilde{x}_i)\tilde{x}_i^{\rm T}Q_i\tilde{x}_i+2b_i(\tilde{x}_i^{\rm T}P_i\tilde{x}_i)\tilde{x}_i^{\rm T}P_i F_i\\ &\quad +2b_i{\rm Tr}\{G_i^{\rm T}(2P_i\tilde{x}_i\tilde{x}_i^{\rm T}P_i+\tilde{x}_i^{\rm T}P_i\tilde{x}P_i)G_i\}. \end{aligned} $$
(52)

Using Young’s inequality(see Lemma 2), together with (17)–(18), we have

$$ \begin{aligned} &2b_i(\tilde{x}_i^{\rm T}P_i\tilde{x}_i)\tilde{x}_i^{\rm T}P_i F_i\\ &\quad \leq 2b_i|P_i|^2|\tilde{x}_i|^3|F_i|\\ &\quad \leq 2b_i\sum_{j=1}^{n_i}|P_i|^2|\tilde{x}_i|^3|f_{i,j}|\\ &\quad \leq\sum_{j=1}^{n_i}\left[ \frac{3b_i}{2}\epsilon_{i,1}^{4/3}|P_i|^{8/3}|\tilde{x}_i|^4+\frac{b_i} {2\epsilon_{i,1}^4}|f_{i,j}|^4\right]\\ &\quad \leq \sum_{j=1}^{n_i}\vphantom{\sum_{k=1}^Ny}\left[\frac{3b_i} {2}\epsilon_{i,1}^{4/3}|P_i|^{8/3}|\tilde{x}_i|^4\right.\\ &\quad \left.+\frac{b_i(2N)^3} {2\epsilon_{i,1}^4}\left(\sum_{k=1}^Ny_k^4(t-{\rm d}(t))\bar{\varphi}^4_{i,j,k,d}(y_k(t-{\rm d}(t))) +\sum_{k=1}^Ny_k^4\bar{\varphi}^4_{i,j,k}(y_k)\right)\right] \end{aligned} $$
(53)

and

$$ \begin{aligned} 2b_i{\rm Tr} &\{G_i^{\rm T}(2P_i\tilde{x}_i\tilde{x}_i^{\rm T}P_i+ \tilde{x}_i^{\rm T}P_i\tilde{x}_iP_i)G_i\}\\ &\quad \leq6b_in_i\sqrt{n_i}|P_i|^2|\tilde{x}_i|^2|G_i|^2\\ &\quad \leq\sum_{j=1}^{n_i}6b_in_i^2\sqrt{n_i}|P_i|^2|\tilde{x}_i|^2|g_{i,j}|^2\\ &\quad \leq\sum_{j=1}^{n_i}\left[\frac{3b_in_i^2\sqrt{n_i}}{\epsilon_{i,2}^2}|g_{i,j}|^4+3b_in_i^2\sqrt{n_i}\epsilon_{i,2}^2|P_i|^4|\tilde{x}_i|^4\right]\\ &\quad \leq\sum_{j=1}^{n_i}\left[\frac{3b_in_i^2\sqrt{n_i}} {\epsilon_{i,2}^2}(2N)^3\left( \sum_{k=1}^Ny_k^4(t-{\rm d}(t))\bar{\psi}^4_{i,j,k,d}(y_k(t-{\rm d}(t)))+ \sum_{k=1}^Ny_k^4\bar{\psi}^4_{i,j,k}(y_k)\right)\right.\\ &\quad \left.+3b_in_i^2\sqrt{n_i}\epsilon_{i,2}^2|P_i|^4|\tilde{x}_i|^4\vphantom{\sum_{k=1}^Ny}\right] \end{aligned} $$
(54)

where \(\epsilon_{i,1}\) and \(\epsilon_{i,2}\) are the positive design constants. The detailed derivation of the inequality (54) refers to the eq. (A.7) in [29]. Substituting (53)–(54) back into (52) yields (27).

Appendix B: The proof of Theorem 2

Consider the following Lyapunov function for the system (35)

$$ V_{i,1}=\frac{1}{4}y_i^4+\frac{1} {4}\sum_{j=2}^{n_i}z_{i,j}^4+\frac{1}{2}\tilde{W}_i^{\rm T}\Upgamma_i^{-1}\tilde{W}_i+\frac{1} {2}\gamma_i^{-1}\tilde{\theta}_i^{2} $$
(55)

where \(\tilde{W}_i=W_i-\hat{W}_i\) and \(\tilde{\theta}_i=\theta_i-\hat{\theta}_i\) denote the estimates of W i and θ i , respectively. Along the solutions of (34) and (35), we have

$$ \begin{aligned} {{\mathcal{L}}}V_{i,1} = & -c_{i,1}y_i^4-y_i^4\left(\hat{W}_i^{\rm T}S_i(y_i) +\psi_i(y_i)\hat{\theta}_i\right) +\underbrace{y_i^3(a_{i,1,2}z_2 +a_{i,1,2} \tilde{x}_{i,2}+f_{i,1}(t,y,y(t-{\rm d}(t))))}\limits_{\rm I}\\ & +\underbrace{\frac{3}{2}y_i^2g_{i,1} (t,y,y(t-{\rm d}(t)))g_{i,1}^{\rm T}(t,y,y(t-{\rm d}(t)))} \limits_{\rm II}\\ & +\sum_{j=2}^{n_i} \left[-c_{i,j}z_{i,j}^4-\Upxi_{i,j}z_{i,j}^4-\frac{1}{4} \lambda_{i,j} \left(\frac{\partial^2\alpha_{i,j-1}} {\partial y_i^2}\right)^{2}z_{i,j}^6\right]\\ & -\sum_{j=2}^{n_i-1}\frac{3}{4}(\delta_{i,j}a_{i,,j,j+1})^{4/3}z_{i,j}^4 +\underbrace{\sum_{j=2}^{n_i-1}a_{i,j,j+1}z_{i,j+1}z_{i,j}^3} \limits_{\rm III}\\ &\underbrace{-\sum_{j=2}^{n_i}z_{i,j}^3 \frac{\partial\alpha_{i,j-1}}{\partial y_i}(a_{i,1,2} \tilde{x}_{i,2}+f_{i,1}(t,y,y(t-{\rm d}(t))))}\limits_{\rm IV}\\ &\underbrace{-\frac{1}{2}\sum_{j=2}^{n_i}z_{i,j}^3 \left( \frac{\partial^2\alpha_{i,j-1}}{\partial y_i^2}\right) g_{i,1}(t,y,y(t-{\rm d}(t)))g_{i,1}^{\rm T}(t,y,y(t-{\rm d}(t)))} \limits_{\rm V}\\ & +\underbrace{\frac{3}{2} \sum_{j=2}^{n_i}z_{i,j}^2\left( \frac{\partial\alpha_{i,j-1}} {\partial y_i}\right)^2g_{i,1}(t,y,y(t-{\rm d}(t)))g_{i,1}^{\rm T} (t,y,y(t-{\rm d}(t)))}\limits_{\rm VI}\\ & -\tilde{W}_i^{\rm T}S_i(y_i)y_i^4-\tilde{\theta}_i\psi_i(y_i)y_i^4. \end{aligned} $$
(56)

Using Young’s inequality (see Lemma 2) and noting (11)–(12), all underlined terms in (56) satisfy the following inequalities

$$ \begin{aligned} {\rm I}:\,&y_i^3(a_{i,1,2}z_{i,2}+a_{i,1,2}\tilde{x}_{i,2}+f_{i,1})\leq \frac{3}{4}(\delta_{i,1}a_{i,1,2})^{4/3}y_i^4+\frac{3}{4}(\epsilon_{i,3}a_{i,1,2})^{4/3}y_i^4 \\ &\quad +\frac{3}{4}(\epsilon_{i,4}a_{i,1,2})^{4/3}y_i^4+ \frac{1}{4\delta_{i,1}^4}z_{i,2}^4+\frac{1}{4\epsilon_{i,3}^4}|\tilde{x}_i|^4\\ &\quad +\frac{1}{4\epsilon_{i,4}^4}(2N)^3\left[\sum_{k=1}^Ny_k^4(t-{\rm d}(t))\bar{\varphi}^4_{i,1,k,d}(y_k(t-{\rm d}(t))) +\sum_{k=1}^Ny_k^4\bar{\varphi}^4_{i,1,k}(y_k)\right] \end{aligned} $$
(57)
$$ \begin{aligned} {\rm II}:&\frac{3}{2}y_i^2g_{i,1}(t,y,y(t-{\rm d}(t)))g_{i,1}^{\rm T}(t,y,y(t-{\rm d}(t)))\leq \frac{3\epsilon_{i,5}}{4}y_i^4\\ &\quad + \frac{3}{4\epsilon_{i,5}}(2N)^3\left[\sum_{k=1}^Ny_k^4(t-{\rm d}(t))\bar{\psi}^4_{i,1,k,d} (y_k(t-{\rm d}(t))) +\sum_{k=1}^Ny_k^4\bar{\psi}^4_{i,1,k}(y_k)\right] \end{aligned} $$
(58)
$$ \begin{aligned} {\rm III}:&\sum_{j=2}^{n_i-1}a_{i,j,j+1}z_{i,j+1}z_{i,j}^3\leq \frac{3}{4}\sum_{j=2}^{n_i-1}(\delta_{i,j}a_{i,j,j+1})^{4/3}z_{i,j}^4 + \frac{1}{4}\sum_{j=3}^{n_i}\frac{1}{\delta_{i,j-1}^4}z_{i,j}^4 \end{aligned} $$
(59)
$$ \begin{aligned} {\rm IV}:&-\sum_{j=2}^{n_i}z_{i,j}^3 \frac{\partial\alpha_{i,j-1}}{\partial y_i}(a_{i,1,2}\tilde{x}_{i,2}+f_{i,1}(t,y,y(t-{\rm d}(t))))\\ &\quad \leq \frac{3}{2}\sum_{j=2}^{n_i}(\eta_{i,j}a_{i,1,2})^{4/3}\left( \frac{\partial\alpha_{i,j-1}}{\partial y_i}\right)^{4/3}z_{i,j}^4+\frac{1}{4}\sum_{j=2}^{n_i}\frac{1}{\eta_{i,j}^4}|\tilde{x}_i|^4\\ &\quad +\frac{1}{4}\sum_{j=2}^{n_i} \frac{1}{\eta_{i,j}^4}(2N)^3\left[\sum_{k=1}^Ny_k^4(t-{\rm d}(t))\bar{\varphi}^4_{i,1,k,d}(y_k(t-{\rm d}(t))) +\sum_{k=1}^Ny_k^4\bar{\varphi}^4_{i,1,k}(y_k)\right] \end{aligned} $$
(60)
$$ \begin{aligned} {\rm V}:&-\frac{1}{2}\sum_{j=2}^{n_i}z_{i,j}^3\left( \frac{\partial^2\alpha_{i,j-1}}{\partial y_i^2}\right)g_{i,1}(t,y,y(t-{\rm d}(t)))g_{i,1}^{\rm T}(t,y,y(t-{\rm d}(t)))\\ &\quad \leq \frac{1}{4}\sum_{j=2}^{n_i}\lambda_{i,j}\left( \frac{\partial^2\alpha_{i,j-1}}{\partial y_i^2}\right)^2z_{i,j}^6\\ &\quad + \frac{1}{4}\sum_{j=2}^{n_i} \frac{1}{\lambda_{i,j}}(2N)^3\left[\sum_{k=1}^Ny_k^4(t-{\rm d}(t))\bar{\psi}^4_{i,1,k,d} (y_k(t-{\rm d}(t))) +\sum_{k=1}^Ny_k^4\bar{\psi}^4_{i,1,k}(y_k)\right] \end{aligned} $$
(61)
$$ \begin{aligned} {\rm VI}:& \frac{3}{2}\sum_{j=2}^{n_i}z_{i,j}^2\left( \frac{\partial\alpha_{i,j-1}}{\partial y_i}\right)^2g_{i,1}(t,y,y(t-{\rm d}(t)))g_{i,1}^{\rm T}(t,y,y(t-{\rm d}(t)))\leq\frac{3}{4}\sum_{j=2}^{n_i}\xi_i\left(\frac{\partial\alpha_{i,j-1}} {\partial y_i}\right)^4z_{i,j}^4\\ &\quad +\frac{3}{4}\sum_{j=2}^{n_i} \frac{1}{\xi_{i,j}}(2N)^3\left[\sum_{k=1}^Ny_k^4(t-{\rm d}(t))\bar{\psi}^4_{i,1,k,d}(y_k(t-{\rm d}(t))) +\sum_{k=1}^Ny_k^4\bar{\psi}^4_{i,1,k}(y_k)\right] \end{aligned} $$
(62)

where \(\epsilon_{i,3}>0, \epsilon_{i,4}>0\) and \( \epsilon_{i,5}>0\). Substituting (57)–(62) back into (56) leads to

$$ \begin{aligned} {{\mathcal{L}}}V_{i,1}\leq&\left(\frac{1}{4}\sum_{j=2}^{n_i}\frac{1} {\eta_{i,j}^4}+\frac{1}{4\epsilon_{i,3}^4}\right)|\tilde{x}_i|^4 -\sum_{j=1}^{n_i}c_{i,j}z_{i,j}^4-y_i^4\left(W_i^{\rm T}S_i(y_i)+\psi_i(y_i)\theta_i\right)+y_i^4\beta_i\\ &\quad +\sum_{k=1}^Ny_k^4\Uppsi_{i,2,k}(y_k)+\sum_{k=1}^Ny_k^4(t-{\rm d}(t))\Uppsi_{i,2,k,d}(y_k(t-{\rm d}(t))) \end{aligned} $$
(63)

where \(\beta_i=\frac{3}{4} (\delta_{i,1}a_{i,1,2})^{4/3}+\frac{3} {4}(\epsilon_{i,3}a_{i,1,2})^{4/3}+\frac{3} {4}(\epsilon_{i,4}a_{i,1,2})^{4/3} +\frac{3}{4}\epsilon_{i,5}\), and

$$ \begin{aligned} \Uppsi_{i,2,k,d}(y_k(t-{\rm d}(t)))&=\frac{(2N)^3}{4\epsilon_{i,4}^4}\bar{\varphi}^4_{i,1,k,d}(y_k(t-{\rm d}(t))) + \frac{3(2N)^3}{4\epsilon_{i,5}}\bar{\psi}^{4}_{i,1,k,d}(y_k(t-{\rm d}(t))) \\ &\quad +\frac{(2N)^3}{4}\sum_{j=2}^{n_i} \frac{1}{\eta_{i,j}^4}\bar{\varphi}^4_{i,1,k,d}(y_k(t-{\rm d}(t)))\\ &\quad +\frac{(2N)^3}{4}\sum_{j=2}^{n_i}\frac{1}{\lambda_{i,j}}\bar{\psi}^4_{i,1,k,d}(y_k(t-{\rm d}(t)))\\ &\quad +\frac{3(2N)^3}{4}\sum_{j=2}^{n_i}\frac{1}{\xi_{i,j}} \bar{\psi}^4_{i,1,k,d}(y_k(t-{\rm d}(t))).\\ \Uppsi_{i,2,k}(y)&=\frac{(2N)^3}{4\epsilon_{i,4}^4}\bar{\varphi}^4_{i,1,k}(y_k) + \frac{3(2N)^3}{4\epsilon_{i,5}}\bar{\psi}^{4}_{i,1,k}(y_k)+ \frac{(2N)^3}{4}\sum_{j=2}^{n_i} \frac{1}{\eta_{i,j}^4}\bar{\varphi}^4_{i,1,k}(y_k)\\ &\quad +\frac{(2N)^3}{4}\sum_{j=2}^{n_i} \frac{1}{\lambda_{i,j}}\bar{\psi}^4_{i,1,k}(y_k)+ \frac{3(2N)^3}{4}\sum_{j=2}^{n_i}\frac{1}{\xi_{i,j}}\bar{\psi}^4_{i,1,k}(y_k). \\ \end{aligned} $$

Now we consider the following positive definite function for the whole closed-loop large-scale system

$$ V=\sum_{i=1}^NV_{i,0}+\sum_{i=1}^NV_{i,1}+\frac{1} {1-\zeta}\sum_{i=1}^N\sum_{k=1}^N\int\limits_{t-{\rm d}(t)}^{t}y_k^4(\tau) \Uppsi_{i,k,d}(y_k(\tau)){\rm d}\tau $$
(64)

where the positive function \(\Uppsi_{i,k,d}(y_k(\tau))=\Uppsi_{i,1,k,d}(y(\tau))+\Uppsi_{i,2,k,d}(y_k(\tau))\). From (27) and (63), we have

$$ \begin{aligned} {{\mathcal{L}}}V_i&\leq \sum_{i=1}^N\left[\vphantom{\underline {\beta_i+\sum_{k=1}^N}}\left(-b_i\lambda_{\rm min}(P_i)\lambda_{\rm min}(Q_i)+\frac{3b_in_i} {2}\epsilon_{i,1}^{4/3}|P_i|^{8/3} +3b_in_i^3\sqrt{n_i}\epsilon_{i,2}^2|P_i|^4+\frac{1} {4}\sum_{j=2}^{n_i}\frac{1}{\eta_{i,j}^4}\right.\right.\\ &\quad \left.+\frac{1}{4\epsilon_{i,3}^4}\right)|\tilde{x}_i|^4-\sum_{j=1}^{n_i} c_{i,j}z_{i,j}^4-y_i^4\left(W_i^{\rm T}S_i(y_i)+\psi_i(y_i)\theta_i\right)\\ &\quad \left.+y_i^4\left(\underline {\beta_i+\sum_{k=1}^N\psi_{k,1,i}(y_k) +\sum_{k=1}^N\psi_{k,2,i}(y_k)+\frac{1}{1-\zeta}\sum_{k=1}^N\Uppsi_{k,i,d}(y_i)}\right)\right]. \end{aligned} $$
(65)

The underlined function in (65) is unknown and can be approximated by a NN as following

$$ \beta_i+\sum_{k=1}^N\psi_{k,1,i,d}(y_k) +\sum_{k=1}^N\psi_{k,2,i,d}(y_k)+\frac{1} {1-\zeta}\sum_{k=1}^N\Uppsi_{k,i,d}(y_i)=W_i^{\rm T}S_i(y_i)+\sigma_i(y_i) $$
(66)

with the approximation error |σ i (y i )| ≤ ψ i (y i i . Substituting (59) into (58) results in

$$ \begin{aligned} {{\mathcal{L}}}V&\leq \sum_{i=1}^N\left[\vphantom{\frac{1}{4\epsilon_{i,3}^4}}\left(-b_i\lambda_{\rm min}(P_i) \lambda_{\rm min}(Q_i)+\frac{3b_in_i}{2}\epsilon_{i,1}^{4/3}|P_i|^{8/3} +3b_in_i^3\sqrt{n_i}\epsilon_{i,2}^2|P_i|^4\right.\right.\\ &\quad \left.\left.+\frac{1}{4}\sum_{j=2}^{n_i}\frac{1} {\eta_{i,j}^4}+\frac{1}{4\epsilon_{i,3}^4}\right)|\tilde{x}_i|^4 \right] -\sum_{i=1}^N\sum_{j=1}^{n_i}c_{i,j}z_{i,j}^4. \end{aligned} $$
(67)

Substituting (36) into (67) yields

$$ {{\mathcal{L}}}V_i\leq -\sum_{i=1}^N\nu_i|\tilde{x}_i|^4-\sum_{i=1}^N \sum_{j=1}^{n_i}c_{i,j}z_{i,j}^4. $$
(68)

Similar to the derivation of Theorem 3 in [34], from (68) together with Lemma 1, the conclusion is obvious.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Jiao, L.C. & Wu, J. Decentralized backstepping output-feedback control for stochastic interconnected systems with time-varying delays using neural networks. Neural Comput & Applic 21, 1375–1390 (2012). https://doi.org/10.1007/s00521-011-0590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0590-x

Keywords

Navigation