Skip to main content
Log in

Online identification of nonlinear system using reduced kernel principal component analysis

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The Principal Component Analysis (PCA) is a powerful technique for extracting structure from possibly high-dimensional data sets. It is readily performed by solving an eigenvalue problem, or by using iterative algorithms that estimate principal components. This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). Therefore, the PCA technique is tuned twice, first we exploit the Kernel PCA (KPCA) which is a nonlinear extension of the PCA to RKHS as it transforms the input data by a nonlinear mapping into a high-dimensional feature space to which the PCA is performed. Second, we use the Reduced Kernel Principal Component Analysis (RKPCA) to update the principal components that represent the observations selected by the KPCA method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aissi I (2009) Modélisation, Identification et Commande Prédictive des systèmes non linéaires par utilisations des espaces RKHS, thèse de doctorat, ENIT Tunisie

  2. Scholkopf B, Smola A, Muller K-R (1998) Nonlinear component analysis as kernel eigenvalue problem. Neural Comput 10:1299–1319

    Google Scholar 

  3. Scholkopf B, Smola A (2002) Learning with kernels. The MIT press, Cambridge

    Google Scholar 

  4. Richard C, Bermudez JCM, Honeine P (2009) Online prediction of time series data with kernels. IEEE Trans Signal Process 57:1058–1067

    Google Scholar 

  5. Kuzmin D, Warmuth MK (2007) Online Kernel PCA with entropic matrix updates. In: Proceedings of the 24 the international conference on machine learning, Corvallis, OR

  6. Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc 209:415–446

    MATH  Google Scholar 

  7. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

    MATH  Google Scholar 

  8. Demuth H, Beale M, Hagan M (2007) Neural network toolbox 5, User’s guide, The MathWorks

  9. Wahba G (2000) An introduction to model building with reproducing Kernel Hilbert spaces. Technical report No 1020, Department of Statistics, University of Wisconsin-Madison

  10. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404

    MathSciNet  MATH  Google Scholar 

  11. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, Cambridge

    Google Scholar 

  12. Rosipal R, Trecho LJ (2001) Kernel partial least squares in reproducing Kernel Hilbert spaces. J Mach Learn Res 2:97–123

    Google Scholar 

  13. Fernandez R (1999) Predicting time series with a local support vector regression machine. In: ACAI conference

  14. Gunter Simon, Schraudolph NN, Vishwanathan SVN (2007) Fast iterative kernel principal component analysis. J Mach Learn Res 8:1893–1918

    MathSciNet  Google Scholar 

  15. Chin T-J, Schindler K, Suter D (2006) Incremental Kernel SVD for face recognition with image sets. In: Proceedings of the 7th international conference on automatic face and gesture recognition FGR

  16. Lauer F (2008) Machines à Vecteurs de Support et Identification de Systèmes Hybrides, thèse de doctorat de l’Université Henri Poincaré—Nancy 1, octobre 2008, Nancy, France

  17. Taouali O, Aissi I, Villa N, Messaoud H (2009) Identification of nonlinear multivariable processes modelled on reproducing Kernel Hilbert space: application to tennessee process. In: ICONS, 2nd IFAC international conference on intelligent control systems and signal processing. Istanbul, pp 1–6

  18. Vovk V (2008) Leading strategies in competitive on-line prediction. Theor Comput Sci 405:285–296

    MathSciNet  MATH  Google Scholar 

  19. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  20. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  21. Vandersteen G (1997) Identification of linear and nonlinear systems in an errors-in-variables least squares and total least squares framework, PhD thesis, Vrije Universiteit Brussel

  22. Vovk V (2006) On-line regression competitive with reproducing kernel Hilbert spaces, Technical report arXiv:cs.LG/0511058(version 2), arXiv.org e-Print archive, Jan 2006

  23. Veropoulos K, Cristianini N, Campbell C (1999) The application of support vector machines to medical decision support: a case study, ACAI conference

  24. Ghate VN, Dudul SV (2009) Induction machine fault detection using support vector machine based classifier. WSEAS Trans Syst 8:591–603

    Google Scholar 

  25. Wanga W, Mena C, Lub W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558

    Google Scholar 

  26. Yang MH (2002) Kernel eigenfaces vs. Kernel first faces: face recognition using kernel method, In: IEEE FGR, pp 215–220

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okba Taouali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taouali, O., Elaissi, I. & Messaoud, H. Online identification of nonlinear system using reduced kernel principal component analysis. Neural Comput & Applic 21, 161–169 (2012). https://doi.org/10.1007/s00521-010-0461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0461-x

Keywords

Navigation