Skip to main content
Log in

Extracting the main patterns of natural time series for long-term neurofuzzy prediction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A combination of singular spectrum analysis and locally linear neurofuzzy modeling technique is proposed to make accurate long-term prediction of natural phenomena. The principal components (PCs) obtained from spectral analysis have narrow band frequency spectra and definite linear or nonlinear trends and periodic patterns; hence they are predictable in large prediction horizon. The incremental learning algorithm initiates a model for each of the components as an optimal linear least squares estimation, and adds the nonlinear neurons if they help to reduce error indices over training and validation sets. Therefore, the algorithm automatically constructs the best linear or nonlinear model for each of the PCs to achieve maximum generalization, and the long-term prediction of the original time series is obtained by recombining the predicted components. The proposed method has been primarily tested in long-term prediction of some well-known nonlinear time series obtained from Mackey–Glass, Lorenz, and Ikeda map chaotic systems, and the results have been compared to the predictions made by multi-layered perceptron (MLP) and radial basis functions (RBF) networks. As a real world case study, the method has been applied to the long-term prediction of solar activity where the results have been compared to the long-term predictions of physical precursor and solar dynamo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nelles O (2001) Nonlinear system identification. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  2. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York

    MATH  Google Scholar 

  3. Cichoki A, Chichester R (1993) Neural networks for optimization and signal processing. Wiley, New York

    Google Scholar 

  4. Bossley KM (1997) Neurofuzzy modelling approaches in system identification. PhD thesis, University of Southampton, Southampton

  5. Park J, Sandberg IW (1993) Approximation and radial basis function networks. Neural Comput 5:305–316

    Google Scholar 

  6. Lillekjendlie B, Kugiumtzis D, Christophersen N (1994) Chaotic time series, part II: system identification and prediction. Model Identif Control 15:225–243

    MATH  MathSciNet  Google Scholar 

  7. Leung H, Lo T, Wang S (2001) Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans Neural Netw 12(5):1163–1172

    Article  Google Scholar 

  8. Cao L, Hong Y, Fang H, He G (1995) Predicting chaotic time series with wavelet networks. Physica D 85:225–238

    Article  MATH  Google Scholar 

  9. Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59(8):845–848

    Article  MathSciNet  Google Scholar 

  10. Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  11. Ott E (1993) Chaos in dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Ott E, Sauer T, Yorke JA (eds) (1994) Coping with chaos: analysis of chaotic data and the exploitation of chaotic systems. Wiley, New York

  13. Fredrich K (1986) Estimating the dimension of weather and climate attractors. J Atmos Sci 43:419–432

    Article  Google Scholar 

  14. Medio A (1992) Chaotic dynamics: theory and applications to economics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Navone HD, Ceccatto HA (1995) Forecasting chaos from small data sets: a comparison of different nonlinear algorithms. J Phys A 28(12):3381–3388

    Article  MATH  Google Scholar 

  16. Brown GM (1992) The peak of solar cycle 22: predictions in retrospect. Ann Geophys 10:453–470

    Google Scholar 

  17. Thompson R (1993) A technique for predicting the amplitude of solar cycle. Solar Phys 148:383

    Article  Google Scholar 

  18. Joselyn JA, et al (1997) Panel achieves consensus prediction of solar cycle. EOS Trans AGU 78:211–212

    Article  Google Scholar 

  19. Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM (1978) Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys Res Lett 5:411

    Google Scholar 

  20. Schatten KH, Sofia S (1987) Forecast of an exceptionally large even numbered solar cycle. Geophys Res Lett 14:632

    Google Scholar 

  21. Schatten KH, Pesnell WD (1993) An early solar dynamo prediction: cycle 23 ∼ cycle 22. Geophys Res Lett 20:2257–2278

    Google Scholar 

  22. Schatten KH, Myers DJ, Sofia S (1996) Solar activity forecast for solar cycle 23. Geophys Res Lett 23(6):605–608

    Article  Google Scholar 

  23. Sofia S, Fox P, Schatten KH (1998) Forecast update for activity cycle 23 from a dynamo-based method. Geophys Res Lett 25(22):4149–4152

    Article  Google Scholar 

  24. Tong H, Lim K (1980) Threshold autoregressive limit cycles and cyclical data. J R Stat Soc B 42:245–292

    MATH  Google Scholar 

  25. Weigend A, Huberman B, Rumelhart DE (1992) Predicting sunspots and exchange rates with connectionist networks. In: Casdagli E (eds) Nonlinear modeling and forecasting. Addison–Wesley, Reading, pp 395–432

    Google Scholar 

  26. Uluyol O, Ragheb M, Ray SR (1998) Local output gamma feedback neural network. Proc IEEE Int Conf Neural Netw IJCNN 1:337–342

    Google Scholar 

  27. Tong H (1996) Nonlinear time series: a dynamical system approach. Oxford University Press, London

    Google Scholar 

  28. Lucas C, Abbaspour A, Gholipour A, Araabi BN, Fatourechi M (2003) Enhancing the performance of neurofuzzy predictors by emotional learning algorithm. Informatica 27(2):165–174

    Google Scholar 

  29. Gholipour A, Abbaspour A, Araabi BN, Lucas C (2003) Enhancements in the prediction of solar activity by locally linear model tree. Proceedings of MIC2003: 22nd international conference on modeling, identification and control. Innsbruck, pp 158–161

  30. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics with applications to paleoclimatic time series. Physica D 35:395–424

    Article  MATH  MathSciNet  Google Scholar 

  31. Vautard R, Yiou P, Ghil M (1992) Singular spectrum analysis: a toolkit for short noisy chaotic signals. Physica D 58:95–126

    Article  Google Scholar 

  32. Kugiumtzis D, Lillekjendlie B, Christophersen N (1994) Chaotic time series, part I: Estimation of some invariant properties in state space. Model Identif Control 15(4):205–224

    Article  MATH  MathSciNet  Google Scholar 

  33. Mackey M, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:281–287

    Article  Google Scholar 

  34. Fröyland J (1992) Introduction to chaos and coherence. IOP Publishing Ltd, London

    MATH  Google Scholar 

  35. So P, Ott E, Sauer T, Gluckman B, Grebogi C, Schiff S (1997) Extracting unstable periodic orbits from chaotic time series data. Phys Rev E 55(5):5398–5417

    Article  MathSciNet  Google Scholar 

  36. Chatfield C (1989) The analysis of time series: an introduction. Chapman and Hall, London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caro Lucas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gholipour, A., Lucas, C., Araabi, B.N. et al. Extracting the main patterns of natural time series for long-term neurofuzzy prediction. Neural Comput & Applic 16, 383–393 (2007). https://doi.org/10.1007/s00521-006-0062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-006-0062-x

Keywords

Navigation