Skip to main content
Log in

Nutrition and metabolism status alteration in advanced hepatocellular carcinoma patients treated with anti-PD-1 immunotherapy

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the nutrition and metabolism status alteration during immunotherapy in advanced hepatocellular carcinoma (HCC) patients.

Methods

Patients with advanced HCC who participated in the clinical trials of single-agent anti-PD-1 immunotherapy or sorafenib were retrospectively included. We analyzed self-comparison of the nutritional and metabolic indices of patients in the anti-PD-1 and sorafenib treatment group. We conducted mutual-comparison of the mentioned indices between the disease progression group and disease control group among anti-PD-1 treatment patients. We further analyzed those indices with statistical differences by partial correlation and survival analysis.

Results

Both self-comparison before and after treatment in the anti-PD-1 group and mutual-comparison of disease progression and the control group showed significant differences in multiple indices, but we did not observe significant differences in the sorafenib group. Strikingly, albumin (ALB)/prognostic nutritional index (PNI, calculated by serum albumin and lymphocyte count) decreased distinctly in the immunotherapy disease progression group patients. However, changes in ALB/PNI were not significant in disease progression patients from the sorafenib group or in the disease control patients with immunotherapy. Partial correlation analysis suggested that ALB and PNI were positively correlated with the efficacy of immunotherapy. Furthermore, survival analysis showed that the median progression-free survival and median overall survival of patients in the ALB/PNI decreased group were significantly shorter than those of patients from the ALB/PNI increased group.

Conclusion

Anti-PD-1 immunotherapy might alter the nutritional and metabolic status in advanced HCC patients. We also should pay attention to the nutritional and metabolic status of patients when drug resistance is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PD-1:

Programmed death-1

HCC:

Hepatocellular carcinoma

BMI:

Body mass index

AFP:

Alpha-fetoprotein

WBC:

White blood cell

N:

Neutrophil

L:

Lymphocyte

M:

Mononuclear

E:

Eosinophils

B:

Basophils

RBC:

Red blood cell

Hb:

Hemoglobin

PLT:

Platelet

TP:

Total protein

ALB:

Albumin

GLOB:

Globulin

A/G:

Albumin/globulin ratio

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

AKP:

Alkaline phosphatase

TBA:

Total bile acid

TB:

Total bilirubin

DB:

Direct bilirubin

IB:

Indirect bilirubin

ADA:

Adenylate dehydrogenase

GGT:

γ-glutamyl transcriptase

Ccr:

Creatinine clearance rate

Cr:

Creatinine

BUN:

Urea nitrogen

UA:

Uric acid

LDH:

Lactate dehydrogenase

AFU:

α-L-fucosidase

GPDA:

Glycylproline dipeptidyl aminopeptidase

TG:

Triglyceride

TC:

Total cholesterol

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

VLDL:

Very low-density lipoprotein

GLU:

Glucose

K:

Potassium

Na:

Sodium

Cl:

Chloride

Ca:

Calcium

P:

Phosphorus

PNI:

Prognostic nutritional index

PLR:

Platelet-to-lymphocyte ratio

LMR:

Lymphocyte-to-monocyte ratio

NLR:

Neutrophil-to-lymphocyte ratio

PFS:

Progression-free survival

OS:

Overall survival

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    PubMed  Google Scholar 

  3. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132

    PubMed  Google Scholar 

  4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, SHARP Investigators Study Group (2008) Sorafenib in advanced hepatocellular car-cinoma. N Engl J Med 359:378–390

    CAS  PubMed  Google Scholar 

  5. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng AL (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391(10126):1163–1173

    CAS  PubMed  Google Scholar 

  6. Medavaram S, Zhang Y (2018) Emerging therapies in advanced hepatocellular carcinoma. Exp Hematol Oncol 7:17

    PubMed  PubMed Central  Google Scholar 

  7. El-Khoueiry AB, Sangro B, Yau T et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389(10088):2492–2502

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin S, Ren Z, Meng Z, Chen Z, Chai X, Xiong J, Bai Y, Yang L, Zhu H, Fang W, Lin X, Chen X, Li E, Wang L, Chen C, Zou J (2020) Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol 21(4):571–580

    CAS  PubMed  Google Scholar 

  9. Yen CJ, Markman B, Chao Y et al (2017) Preliminary results of a phase 1A/1B study of BGB-A317, an anti-PD-1 monoclonal antibody (mAb), in patients with advanced hepatocellular carcinoma (HCC). Ann Oncol 28(Suppl 3):iii54

    Google Scholar 

  10. Mantzorou M, Koutelidakis A, Theocharis S, Giaginis C (2017) Clinical value of nutritional status in cancer: what is its impact and how it affects disease progression and prognosis. Nutr Cancer 69(8):1151–1176

    PubMed  Google Scholar 

  11. Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17(4):351–359

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16(2):153–166

    CAS  PubMed  Google Scholar 

  13. Onodera T, Goseki N, Kosaki G (1984) Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 85(9):1001–1005

    CAS  PubMed  Google Scholar 

  14. Mohri T, Mohri Y, Shigemori T, Takeuchi K, Itoh Y, Kato T (2016) Impact of prognostic nutritional index on long-term outcomes in patients with breast cancer. World J Surg Oncol 14(1):170

    PubMed  PubMed Central  Google Scholar 

  15. Matsumoto Y, Zhou Q, Kamimura K, Moriyama M, Saijo Y (2018) The prognostic nutrition index predicts the development of hematological toxicities in and the prognosis of esophageal cancer patients treated with cisplatin plus 5-fluorouracil chemotherapy. Nutr Cancer 70(3):447–452

    PubMed  Google Scholar 

  16. Shimizu T, Taniguchi K, Asakuma M et al (2019) Lymphocyte-to-monocyte ratio and prognostic nutritional index predict poor prognosis in patients on chemotherapy for unresectable pancreatic cancer. Anticancer Res 39(4):2169–2176

    CAS  PubMed  Google Scholar 

  17. Feng JR, Qiu X, Wang F et al (2017) Diagnostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in Crohn’s disease. Gastroenterol Res Pract 2017:3526460

    PubMed  PubMed Central  Google Scholar 

  18. Qi Y, Liao D, Fu X, Gao Q, Zhang Y (2019) Elevated platelet-to-lymphocyte corresponds with poor outcome in patients with advanced cancer receiving anti-PD-1 therapy. Int Immunopharmacol 74:105707

    CAS  PubMed  Google Scholar 

  19. Goh BKP (2016) Significance of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and prognostic nutrition index as preoperative predictors of early mortality after liver resection for huge (10cm) hepatocellular carcinoma. J Surg Oncol 113:621–627. https://doi.org/10.1002/jso.24197

    Article  CAS  PubMed  Google Scholar 

  20. Ren M, Li J, Xue R, Wang Z, Coll SL, Meng Q (2019) Liver function and energy metabolism in hepatocellular carcinoma developed in patients with hepatitis B-related cirrhosis. Medicine (Baltimore) 98(19):e15528

    Google Scholar 

  21. Ye Q, Yin W, Zhang L, Xiao H, Qi Y, Liu S, Qian B, Wang F, Han T (2017) The value of grip test, lysophosphatidlycholines, glycerophosphocholine, ornithine, glucuronic acid decrement in assessment of nutritional and metabolic characteristics in hepatitis B cirrhosis. PLoS One 12(4):e0175165

    PubMed  PubMed Central  Google Scholar 

  22. Alwarawrah Y, Kiernan K, MacIver NJ (2018) Changes in nutritional status impact immune cell metabolism and function. Front Immunol 9:1055

    PubMed  PubMed Central  Google Scholar 

  23. Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ (2014) Leptin metabolically licenses T cells for activation to link nutrition and immunity. J Immunol 192(1):136–144

    CAS  PubMed  Google Scholar 

  24. Saha S, Shalova IN, Biswas SK (2017) Metabolic regulation of macrophage phenotype and function. Immunol Rev 280(1):102–111

    CAS  PubMed  Google Scholar 

  25. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Michalek RD, Rathmell JC (2010) The metabolic life and times of a T-cell. Immunol Rev 236:190–202

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 460(7251):103–107

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bruix J, Sherman M, American Association for the Study of Liver Diseases (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022

    PubMed  Google Scholar 

  29. Selçuk Ö, Yayla V, Çabalar M, Güzel V, Uysal S, Gedikbaşi A (2014) The relationship of serum S100B levels with infarction size and clinical outcome in acute ischemic stroke patients. Noro Psikiyatr Ars 51(4):395–400

    PubMed  PubMed Central  Google Scholar 

  30. Xiang QF, Zhan MX, Li Y, Liang H, Hu C, Huang YM, Xiao J, He X, Xin YJ, Chen MS, Lu LG (2019) Activation of MET promotes resistance to sorafenib in hepatocellular carcinoma cells via the AKT/ERK1/2-EGR1 pathway. Artif Cells Nanomed Biotechnol 47(1):83–89

    CAS  PubMed  Google Scholar 

  31. Gouirand V, Guillaumond F, Vasseur S (2018) Influence of the tumor microenvironment on cancer cells metabolic reprogramming. Front Oncol 8:117

    PubMed  PubMed Central  Google Scholar 

  32. Choi Y, Kim JW, Nam KH, Han SH, Kim JW, Ahn SH, Park DJ, Lee KW, Lee HS, Kim HH (2017) Systemic inflammation is associated with the density of immune cells in the tumor microenvironment of gastric cancer. Gastric Cancer 20(4):602–611

    CAS  PubMed  Google Scholar 

  33. Chang CH, Qiu J, O'Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18(1):10

    PubMed  PubMed Central  Google Scholar 

  35. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X (2019) Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J 17:661–674

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu F, Jin T, Zhu Y, Dai C (2018) Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res 37(1):110

    PubMed  PubMed Central  Google Scholar 

  37. Cai J, Qi Q, Qian X, Han J, Zhu X, Zhang Q, Xia R (2019) The role of PD-1/PD-L1 axis and macrophage in the progression and treatment of cancer. J Cancer Res Clin Oncol 145(6):1377–1385

    CAS  PubMed  Google Scholar 

  38. Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16(5):565–577

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirschey MD, DeBerardinis RJ, Diehl A, Drew JE, Frezza C, Green MF, Jones LW, Ko YH, le A, Lea MA, Locasale JW, Longo VD, Lyssiotis CA, McDonnell E, Mehrmohamadi M, Michelotti G, Muralidhar V, Murphy MP, Pedersen PL, Poore B, Raffaghello L, Rathmell JC, Sivanand S, Vander Heiden MG, Wellen KE, Target Validation Team (2015) Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 35(Suppl):S129–S150

    PubMed  Google Scholar 

  40. Antoun S, Khan S, Raynard B (2018) Managing malnutrition in cancer patients. Rev Prat 68(9):940–945

    PubMed  Google Scholar 

  41. Tan CS, Read JA, Phan VH, Beale PJ, Peat JK, Clarke SJ (2015) The relationship between nutritional status, inflammatory markers and survival in patients with advanced cancer: a prospective cohort study. Support Care Cancer 23(2):385–391

    PubMed  Google Scholar 

  42. Nicolini A, Ferrari P, Masoni MC, Fini M, Pagani S, Giampietro O, Carpi A (2013) Malnutrition, anorexia and cachexia in cancer patients: a mini-review on pathogenesis and treatment. Biomed Pharmacother 67(8):807–817

    CAS  PubMed  Google Scholar 

  43. Menta PL, Correia MI, Vidigal PV, Silva LD, Teixeira R (2015) Nutrition status of patients with chronic hepatitis B or C. Nutr Clin Pract 30(2):290–296

    PubMed  Google Scholar 

  44. Lebossé F, Gudd C, Tunc E, Singanayagam A, Nathwani R, Triantafyllou E, Pop O, Kumar N, Mukherjee S, Hou TZ, Quaglia A, Zoulim F, Wendon J, Dhar A, Thursz M, Antoniades CG, Khamri W (2019) CD8+T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 49:258–268

    PubMed  PubMed Central  Google Scholar 

  45. Kim HY, Park JW (2017) Current immunotherapeutic strategies in hepatocellular carcinoma: recent advances and future directions. Ther Adv Gastroenterol 10(10):805–814

    CAS  Google Scholar 

  46. Zhang C, Wang H, Ning Z, Xu L, Zhuang L, Wang P, Meng Z (2016) Prognostic nutritional index serves as a predictive marker of survival and associates with systemic inflammatory response in metastatic intrahepatic cholangiocarcinoma. Onco Targets Ther 9:6417–6423

    PubMed  PubMed Central  Google Scholar 

  47. Sun J, Mei Y, Zhu Q, Shou C, Tjhoi WEH, Yang W, Yu H, Zhang Q, Liu X, Yu J (2019) Relationship of prognostic nutritional index with prognosis of gastrointestinal stromal tumors. J Cancer 10(12):2679–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pinato DJ, North BV, Sharma R (2012) A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: the prognostic nutritional index (PNI). Br J Cancer 106(8):1439–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Königsbrügge O, Posch F, Riedl J, Reitter EM, Zielinski C, Pabinger I, Ay C (2016) Association between decreased serum albumin with risk of venous thromboembolism and mortality in cancer patients. Oncologist 21(2):252–257

    PubMed  PubMed Central  Google Scholar 

  50. Seebacher V, Grimm C, Reinthaller A, Heinze G, Tempfer C, Hefler L, Polterauer S (2013) The value of serum albumin as a novel independent marker for prognosis in patients with endometrial cancer. Eur J Obstet Gynecol Reprod Biol 171(1):101–106

    CAS  PubMed  Google Scholar 

  51. Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, Chaput N, Eggermont A, Marabelle A, Soria JC, Ferté C (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23(8):1920–1928

    CAS  PubMed  Google Scholar 

  52. Champiat S, Ferrara R, Massard C, Besse B, Marabelle A, Soria JC, Ferté C (2018) Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat Rev Clin Oncol 15(12):748–762

    CAS  PubMed  Google Scholar 

  53. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, Peters S (2019) Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30(1):44–56

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China Youth Program (Grant Nos. 81802350 and 81802355), Science and Technology Major Project of China (Grant No. 2017ZX10203205), and Zhejiang provincial medical and health young talents project of China (Grant No. 2019RC285).

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by Weijia Fang, Yuefen Pan, Yizhen Jiang, Xiaoxuan Tu, Xiangying Zhang, Weiqin Jiang, Yi Zheng, Peng Zhao, Zhou Tong, and Qihan Fu. Material preparation, data collection, and analysis were performed by Yizhen Jiang, Xiaoxuan Tu, Xiangying Zhang, Haihong Liao, and Shuwen Han. Yuefen Pan and Weijia Fang led the study. The first draft of the manuscript was written by Yizhen Jiang, Shuwen Han, Quan Qi, Junjun Shen, Liping Zhong, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuefen Pan or Weijia Fang.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Tu, X., Zhang, X. et al. Nutrition and metabolism status alteration in advanced hepatocellular carcinoma patients treated with anti-PD-1 immunotherapy. Support Care Cancer 28, 5569–5579 (2020). https://doi.org/10.1007/s00520-020-05478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-020-05478-x

Keywords

Navigation