Skip to main content

Advertisement

Log in

GWAS of 972 autologous stem cell recipients with multiple myeloma identifies 11 genetic variants associated with chemotherapy-induced oral mucositis

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

High-dose chemotherapy and autologous stem cell transplant (ASCT) to treat multiple myeloma (MM) and other cancers carries the risk of oral mucositis (OM) with sequelae including impaired nutritional and fluid intake, pain, and infectious complications. As a result of these problems, cancer treatment may have to be interrupted or delayed. In this study, we looked beyond OM’s known risk factors of renal function and melphalan dose with a genome-wide association study (GWAS) to evaluate whether genetic variants in conjunction with clinical risk factors influence predisposition for OM.

Methods

Genotyping was performed using Illumina HumanOmni1-Quad v1.0 BeadChip and further assessed for data quality. We tested 892,589 germline single-nucleotide polymorphisms (SNPs) for association with OM among 972 Caucasian patients treated with high-dose melphalan and ASCT in Total Therapy clinical trials (TT2, TT3, TT4) for newly diagnosed MM. Statistical analyses included t tests, stepwise regression modeling, and logistic regression modeling to find baseline clinical factors and genotypes associated with OM.

Results

We found that 353 (36.3 %) patients had grades 2–4 OM. Type of treatment protocol, baseline estimated glomerular filtration rate, and melphalan dose along with baseline serum albumin and female gender predicted 43.6 % of grades 2–4 OM cases. Eleven SNPs located in or near matrix metalloproteinase 13, JPH3, DHRS7C, CEP192, CPEB1/LINC00692, FBN2, ALDH1A1, and DMRTA1/FLJ35282 were associated with grades 2–4 OM. The addition of these SNPs increased sensitivity in detecting grades 2–4 OM cases to 52 %.

Conclusions

These SNPs may be important for their roles in inflammatory pathways, epithelial healing, and chemotherapy detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barlogie B, Shaughnessy J, Tricot G et al (2004) Treatment of multiple myeloma. Blood 103(1):20–32. doi:10.1182/blood-2003-04-1045

    Article  CAS  PubMed  Google Scholar 

  2. Giralt S, Bensinger W, Goodman M et al (2003) 166Ho-DOTMP plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase 1/2 trials. Blood 102(7):2684–2691. doi:10.1182/blood-2002-10-3250

    Article  CAS  PubMed  Google Scholar 

  3. Blijlevens N, Schwenkglenks M, Bacon P et al (2008) Prospective oral mucositis audit: oral mucositis in patients receiving high-dose melphalan or BEAM conditioning chemotherapy. European Blood and Marrow Transplantation Mucositis Advisory Group. J Clin Oncol 26(9):1519–1525. doi:10.1200/JCO.2007.13.6028

    Article  CAS  PubMed  Google Scholar 

  4. Clarkson JE, Worthington HV, Furness S et al (2010) Interventions for treating oral mucositis for patients with cancer receiving treatment. Cochrane Database Syst Rev 8, CD001973. doi:10.1002/14651858.CD001973.pub4

    PubMed  Google Scholar 

  5. McCann S, Schwenkglenks M, Bacon P et al (2009) The prospective oral mucositis audit: relationship of severe oral mucositis with clinical and medical resource use outcomes in patients receiving high-dose melphalan or BEAM-conditioning chemotherapy and autologous SCT. Bone Marrow Transplant 43(2):141–147. doi:10.1038/bmt.2008.299

    Article  CAS  PubMed  Google Scholar 

  6. Epstein JB (2007) Mucositis in the cancer patient and immunosuppressed host. Infect Dis Clin North Am 21(2):503–522. doi:10.1016/j.idc.2007.03.003, vii

    Article  PubMed  Google Scholar 

  7. Sharma SK, Handoo A, Choudhary D, Dhamija G, Gupta N (2013) Severe gastrointestinal mucositis following high dose melphalan therapy for multiple myeloma. World J Gastroenterol 19(5):784–785. doi:10.3748/wjg.v19.i5.784, PMCID: PMC3574610. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574610/pdf/WJG-19-784.pdf

    Article  PubMed Central  PubMed  Google Scholar 

  8. Murphy BA (2007) Clinical and economic consequences of mucositis induced by chemotherapy and/or radiation therapy. J Support Oncol 5(9 Suppl 4):13–21, http://www.oncologypractice.com/jso/journal/articles/0509s413.pdf

    PubMed  Google Scholar 

  9. Tsirigotis P, Triantafyllou K, Girkas K et al (2008) Keratinocyte growth factor is effective in the prevention of intestinal mucositis in patients with hematological malignancies treated with high-dose chemotherapy and autologous hematopoietic SCT: a video-capsule endoscopy study. Bone Marrow Transplant 42(5):337–343. doi:10.1038/bmt.2008.168

    Article  CAS  PubMed  Google Scholar 

  10. Grazziutti ML, Dong L, Miceli MH et al (2006) Oral mucositis in myeloma patients undergoing melphalan-based autologous stem cell transplantation: incidence, risk factors and a severity predictive model. Bone Marrow Transplant 38(7):501–506. doi:10.1038/sj.bmt.1705471

    Article  CAS  PubMed  Google Scholar 

  11. Barlogie B, Tricot G, Anaissie E et al (2006) Thalidomide and hematopoetic-cell transplantation for multiple myeloma. N Engl J Med 354(10):1021–1030. doi:10.1056/NEJMoa053583

    Article  CAS  PubMed  Google Scholar 

  12. Barlogie B, Anaissie E, van Rhee F et al (2007) Incorporating bortezomib into upfront treatment for multiple myeloma: early results of Total Therapy 3. Br J Haematol 138(2):176–185. doi:10.1111/j.1365-2141.2007.06639.x

    Article  CAS  PubMed  Google Scholar 

  13. Anaissie EJ et al (2010) Comparing toxicities and survival outcomes with total therapy 4 (TT4) for 70-gene (R70)-defined low-risk multiple myeloma (MM) to results obtained with Total Therapy 3 Protocols TT3A and TT3B. Blood (ASH Annu Meet Abstr) 116(21), Abstract 368, http://abstracts.hematologylibrary.org/cgi/content/abstract/116/21/368?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=368+&searchid=1&FIRSTINDEX=0&volume=116&issue=21&resourcetype=HWCIT

    Google Scholar 

  14. Mosteller RD (1987) Simplified calculation of body surface area. N Engl J Med 317(17):1098. doi:10.1056/NEJM198710223171717

    CAS  PubMed  Google Scholar 

  15. Common Terminology Criteria for Adverse Events (CTCAE) version 4. http://www.acrin.org/Portals/0/Administration/Regulatory/CTCAE_4.02_2009-09-15_QuickReference_5x7.pdf

  16. Levey AS, Greene T, Kusek JW et al (2000) A simplified equation to predict glomerular filtration rate from serum creatinine [abstract]. J Am Soc Nephrol 11:A0828, 155A

    Google Scholar 

  17. Cochran WG (1954) Some methods for strengthening the common chi-squared tests. Biometrics (Int Biom Soc) 10(4):417–451. doi:10.2307/3001616

    Google Scholar 

  18. Armitage P (1955) Tests for linear trends in proportions and frequencies. Biometrics (Int Biom Soc) 11(3):375–386. doi:10.2307/3001775

    Google Scholar 

  19. Benjamimi Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. JR Stat Soc B 57(1):289–300, http://www.jstor.org/stable/2346101

    Google Scholar 

  20. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346. doi:10.1038/nature10887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen G, Qiu C, Zhang Q et al (2013) Genome-wide analysis of human SNPs at long intergenic noncoding RNAs. Hum Mutat 34(2):338–344. doi:10.1002/humu.22239

    Article  PubMed  Google Scholar 

  22. Sonis ST, Antin JH, Tedaldi MW, Alterovitz G (2013) SNP-based Bayesian networks can predict oral mucositis risk in autologous stem cell transplant recipients. Oral Dis 19(7):721–727. doi:10.1111/odi.12146

    Article  PubMed  Google Scholar 

  23. Sonis ST (2011) Oral mucositis. Anti Cancer Drugs 22(7):607–612. doi:10.1097/CAD.0b013e3283462086

    Article  CAS  PubMed  Google Scholar 

  24. Haynes SL, Shuttleworth CA, Kielty CM (1997) Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization. Br J Dermatol 137(1):17–23. doi:10.1046/j.1365-2133.1997.1762185.x

    Article  CAS  PubMed  Google Scholar 

  25. Davis MR, Summers KM (2012) Structure and function of the mammalian fibrillin gene family: Implications for human connective tissue diseases. Mol Genet Metab 107(4):635–647. doi:10.1016/j.ymgme.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  26. Nistala H, Lee-Arteaga S, Smaldone S et al (2010) Fibrillin-1 and -2 differently modulate endogenous TGF-β and BMP bioavailability during bone formation. J Cell Biol 190(6):1107–1121. doi:10.1083/jcb.201003089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ben-Lulu S, Pollak Y, Mogilner J et al (2012) Dietary transforming growth factor-beta 2 (TGF-β2) supplementation reduces methotrexate-induced intestinal mucosal injury in a rat. PLoS One 7(9):e45221. doi:10.1371/journal.pone.0045221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. de Koning BAE, Philipsen-Geerling B, Hoijer M et al (2007) Protection against chemotherapy induced mucositis by TGF-β2 in childhood cancer patients: results from a randomized cross-over study. Pediatr Blood Cancer 48(5):532–539. doi:10.1002/pbc.20910

    Article  PubMed  Google Scholar 

  29. Foncuberta MC, Cagnoni PJ, Brandts CH et al (2001) Topical transforming growth factor TGF-β3 in the prevention or alleviation of chemotherapy-induced oral mucositis in patients with lymphomas or solid tumors. J Immunother 24(4):384–388. doi:10.1097/00002371-200107000-00014

    Article  CAS  PubMed  Google Scholar 

  30. Bian HG, Li LF et al (2013) Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 19(4):421–428. doi:10.1038/nm.3118

    Article  PubMed Central  PubMed  Google Scholar 

  31. Uitto VJ, Airola K, Vaalamo M et al (1998) Collagenase-3 (matrix metalloproteinase-13) expression is induced in oral mucosal epithelium during chronic inflammation. Am J Pathol 152(6):1489–1499, PMC1858431

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hattori N, Mochizuki S, Kishi K et al (2009) MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am J Pathol 175(2):533–546. doi:10.2353/ajpath.2009.081080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Toriseva M, Laato M, Carpen O et al (2012) MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability. PLoS One 7(8):e42596. doi:10.1371/journal.pone.0042596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pinto N, Ludeman SM, Dolan ME (2009) Drug focus: pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 10(12):1897–1903. doi:10.2217/pgs.09.134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hassan M, Andersson BS (2013) Role of pharmacogenetics in busulfan/cyclophosphamide conditioning therapy prior to hematopoietic stem cell transplantation. Pharmacogenomics 14(1):75–87. doi:10.2217/pgs.12.185

    Article  CAS  PubMed  Google Scholar 

  36. Lu B, Tigchelaar W, Ruifrok W et al (2012) DHRS7c, a novel cardiomyocyte-expressed gene that is down-regulated by adrenergic stimulation and in heart failure. Eur J Heart Fail 14(1):5–13. doi:10.1093/eurjhf/hfr152

    Article  CAS  PubMed  Google Scholar 

  37. Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344. doi:10.1001/jama.299.11.1335

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to report. Author/COI Disclosure Forms were submitted along with the manuscript.

Author contributions

EJ Anaissie, EA Coleman, JY Lee, JA Goodwin, CA Enderlin, and VR Raj are responsible for the conception and design; N Sanathkumar, EA Coleman, EJ Anaissie, and JA Goodwin for the collection and verification of clinical data; VR Raj, O Stephens, and SW Erickson for the generation and verification of GWAS data; JY Lee, SW Erickson, EA Coleman, D Zhou, VR Raj, JA Goodwin, and N Sanathkumar for data analysis and interpretation; PJ Reed for the administrative support; KD McKelvey for serving as a consultant on medical genetics; EA Coleman, JY Lee, D Zhou, SW Erickson, JA Goodwin, VR Raj, N Sanathkumar, S Apewokin, and AJ Vangsted for writing the manuscript; and EA Coleman, JY Lee, SW Erickson, JA Goodwin, N Sanathkumar, D Zhou, KD McKelvey, VR Raj, S Apewokin, O Stephens, CA Enderlin, AJ Vangsted, PJ Reed, and EJ Anaissie fo the final approval of the manuscript.

Financial support

Primary support was given by the National Institutes of Health (NIH)/National Institute of Nursing Research (NINR) 5 RC2NR011945, and for the additional support, the Translational Research Institute at UAMS (grant #1UL1RR029884) and the Elizabeth Stanley Cooper Chair in Oncology Nursing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia A. Goodwin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, E.A., Lee, J.Y., Erickson, S.W. et al. GWAS of 972 autologous stem cell recipients with multiple myeloma identifies 11 genetic variants associated with chemotherapy-induced oral mucositis. Support Care Cancer 23, 841–849 (2015). https://doi.org/10.1007/s00520-014-2406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-014-2406-x

Keywords

Navigation