Skip to main content
Log in

Changes in the before and after thyroxine treatment levels of adipose tissue, leptin, and resistin in subclinical hypothyroid patients

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

Subclinical hypothyroidism (SH) occurs when serum thyroid stimulating hormone (TSH) concentrations are raised and serum thyroid hormone concentrations are normal. The effect of SH on the proinflammatory adipose cytokine releasing visceral adipose tissue (VAT) is not clear. The aim of this study is to identify the difference between the pre and posttreatment levels of VAT, leptin, and resistin in SH patients.

Methods

There were 51 SH patients and 43 age- and gender-matched healthy subjects included in the study. Thyroid functions, biochemical tests, leptin, resistin, and visceral and subcutaneous fat measurements were made. The measurements were repeated in the SH group in the third month following L-thyroxin treatment.

Results

Initially, high sensitivity C-reactive protein, carotid artery intima-media thickness (mm), leptin, and resistin levels were significantly higher in the SH group compared to the controls, while the other parameters were similar. While no correlation was observed between TSH levels and adipokines, a positive correlation was detected between waist circumference and leptin levels (r = 0.549, p < 0.01). Visceral adipose tissue was positively correlated to age, waist circumference, and leptin levels, but negatively correlated to free thyroxin (T4) levels (r = 0.419, p = 0.009; r = 0.794, p < 0.01; r = 0.515, p < 0.01 and r = − 0.416, p = 0.009, respectively). A significant decrease was observed in VAT volume, leptin, and resistin levels of SH patients following levothyroxine treatment.

Conclusion

The reduced VAT volume, leptin, and resistin levels in SH patients following treatment may support the idea that TSH affects adipose tissue functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zamboni M, Armellini F, Turcato E, et al. Effect of regain of body weight on regional body fat distribution: comparison between pre- and postmenopausal obese women. Obes Res. 1996;4:555–60.

    Article  CAS  PubMed  Google Scholar 

  2. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145:2273–82.

    Article  CAS  PubMed  Google Scholar 

  3. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–9.

    Article  PubMed  Google Scholar 

  4. Hirooka M, Kumagi T, Kurose K, et al. A technique for the measurement of visceral fat by ultrasonography: comparison of measurements by ultrasonography and computed tomography. Intern Med. 2005;44:794–9.

    Article  PubMed  Google Scholar 

  5. Cooper DS, Biondi B. Subclinical thyroid disease. Lancet. 2012;379:1142–54.

    Article  PubMed  Google Scholar 

  6. Rodondi N, Bauer DC, Cappola AR, et al. Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The Cardiovascular Health study. J Am Coll Cardiol. 2008;52:1152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodondi N, den Elzen WP, Bauer DC, Thyroid Studies Collaboration, et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA. 2010;304:1365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fox CS, Pencina MJ, D’Agostino RB, et al. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Arch Intern Med. 2008;168:587–92.

    Article  PubMed  Google Scholar 

  9. Hsieh CJ, Wang PW, Wang ST, et al. Serum leptin concentrations of patients with sequential thyroid function changes. Clin Endocrinol (Oxf). 2002;57:29–34.

    Article  CAS  Google Scholar 

  10. Yaturu S, Prado S, Grimes SR. Changes in adipocyte hormones leptin, resistin, and adiponectin in thyroid dysfunction. J Cell Biochem. 2004;93:491–6.

    Article  CAS  PubMed  Google Scholar 

  11. Corbetta S, Englaro P, Giambona S, Persani L, Blum WF, Beck-Peccoz P. Lack of effects of circulating thyroid hormone levels on serum leptin concentrations. Eur J Endocrinol. 1997;137:659–63.

    Article  CAS  PubMed  Google Scholar 

  12. Sreenan S, Caro JF, Refetoff S. Thyroid dysfunction is not associated with alterations in serum leptin levels. Thyroid 1997;7:407–9.

    Article  CAS  PubMed  Google Scholar 

  13. Iglesias P, Alvarez FP, Codoceo R, Diez JJ. Serum concentrations of adipocytokines in patients with hyperthyroidism and hypothyroidism before and after control of thyroid function. Clin Endocrinol (Oxf). 2003;59:621–9.

    Article  CAS  Google Scholar 

  14. Valcavi R, Zini M, Peino R, Casanueva FF, Dieguez C. Influence of thyroid status on serum immunoreactive leptin levels. J Clin Endocrinol Metab. 1997;82:1632–4.

    CAS  PubMed  Google Scholar 

  15. Yoshida T, Momotani N, Hayashi M, Monkawa T, Ito K, Saruta T. Serum leptin concentrations in patients with thyroid disorders. Clin Endocrinol (Oxf). 1998;48:299–302.

    Article  CAS  Google Scholar 

  16. Diekman MJ, Romijn JA, Endert E, Sauerwein H, Wiersinga WM. Thyroid hormones modulate serum leptin levels: observations in thyrotoxic and hypothyroid women. Thyroid. 1998;8:1081–6.

    Article  CAS  PubMed  Google Scholar 

  17. Pinkney JH, Goodrick SJ, Katz J, et al. Leptin and the pituitary-thyroid axis: a comparative study in lean, obese, hypothyroid and hyperthyroid subjects. Clin Endocrinol (Oxf). 1998;49:583–8.

  18. Botella-Carretero JI, Alvarez-Blasco F, Sancho J, Escobar-Morreale HF. Effects of thyroid hormones on serum levels of adipokines as studied in patients with differentiated thyroid carcinoma during thyroxine withdrawal. Thyroid. 2006;16:397–402.

    Article  CAS  PubMed  Google Scholar 

  19. Oge A, Bayraktar F, Saygili F, Guney E, Demir S. TSH influences serum leptin levels independent of thyroid hormones in hypothyroid and hyperthyroid patients. Endocr J. 2005;52:213–7.

    Article  CAS  PubMed  Google Scholar 

  20. Krassas GE, Pontikides N, Loustis K, Koliakos G, Constantinidis T, Kaltsas T. Resistin levels are normal in hypothyroidism and remain unchanged after attainment of euthyroidism: relationship with insulin levels and anthropometric parameters. J Endocrinol Invest. 2006;29:606–12.

    Article  CAS  PubMed  Google Scholar 

  21. Westerink J, van der Graaf Y, Faber DR, Visseren FL; SMART study group. The relation between thyroid-stimulating hormone and measures of adiposity in patients with manifest vascular disease. Eur J Clin Invest. 2011;41:159–66.

    Article  CAS  PubMed  Google Scholar 

  22. Korkmaz L, Sahin S, Akyuz AR, et al. Epicardial adipose tissue increased in patients with newly diagnosed subclinical hypothyroidism. Med Princ Pract. 2013;22:42–6.

    Article  PubMed  Google Scholar 

  23. Yildiz BO, Aksoy DY, Harmanci A, et al. Effects of L-thyroxine therapy on circulating leptin and adiponectin levels in subclinical hypothyroidism: a prospective study. Arch Med Res. 2013;44:317–20.

    Article  PubMed  Google Scholar 

  24. Pearce SH, Brabant G, Duntas LH, et al. ETA Guideline: management of subclinical hypothyroidism. Eur Thyroid J. 2013;2:215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  26. Cappola AR, Ladenson PW: Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab. 2003;88:2438–44.

    Article  CAS  PubMed  Google Scholar 

  27. McQuade C, Skugor M, Brennan DM, Hoar B, Stevenson C, Hoogwerf BJ. Hypothyroidism and moderate subclinical hypothyroidism are associated with increased all-cause mortality independent of coronary heart disease risk factors: a PreCIS database study. Thyroid. 2011;2:837–43.

    Article  Google Scholar 

  28. Fain JN, Tagele BM, Cheema P, Madan AK, Tichansky DS. Release of 12 adipokines by adipose tissue, nonfat cells, and fat cells from obese women. Obesity (Silver Spring). 2010;18:890–6.

    Article  CAS  Google Scholar 

  29. Weiss TW, Arnesen H, Troseid M, et al. Adipose tissue expression of interleukin-18 mRNA is elevated in subjects with metabolic syndrome and independently associated with fasting glucose. Wien Klin Wochenschr. 2011;123:650–4.

    Article  CAS  PubMed  Google Scholar 

  30. Nannipieri M, Cecchetti F, Anselmino M, et al. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes (Lond). 2009;33:1001–6.

    Article  CAS  Google Scholar 

  31. Lu M, Lin RY. TSH stimulates adipogenesis in mouse embryonic stem cells. J Endocrinol. 2008;196:159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asvold BO, Bjoro T, Nilsen TI, Gunnell D, Vatten LJ. Thyrotropin levels and risk of fatal coronary heart disease: the HUNT study. Arch Intern Med. 2008;168:855–60.

    Article  PubMed  Google Scholar 

  33. Bruckert E, Giral P, Chadarevian R, Turpin G. Low free-thyroxine levels are a risk factor for subclinical atherosclerosis in euthyroid hyperlipidemic patients. J Cardiovasc Risk. 1999;6:327–31.

    Article  CAS  PubMed  Google Scholar 

  34. Moon MK, Hong ES, Lim JA, et al. Associations between thyroid hormone levels and regional fat accumulation in euthyroid men. Eur J Endocrinol. 2013;168:805–10.

    Article  CAS  PubMed  Google Scholar 

  35. Villar HC, Saconato H, Valente O, Atallah AN. Thyroid hormone replacement for subclinical hypothyroidism. Cochrane Database Syst Rev. 2007;3:CD003419.

    PubMed  Google Scholar 

  36. Gunes F, Asik M, Temiz A, et al. Serum H-FABP levels in patients with hypothyroidism. Wien Klin Wochenschr. 2014;126:727–33.

    Article  CAS  PubMed  Google Scholar 

  37. Monzani F, Caraccio N, Kozakowa M, et al. Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2004;89:2099–106.

    Article  CAS  PubMed  Google Scholar 

  38. Ghasemi M, Mousavi SA, Rezvanian H, Asadi B, Khorvash F, Fatehi F. Carotid intima-media thickness in subclinical hypothyroidism. Int J Stroke. 2010;5:131–2.

    Article  CAS  PubMed  Google Scholar 

  39. Tuzcu A, Bahceci M, Gokalp D, Tuzun Y, Gunes K. Subclinical hypothyroidism may be associated with elevated high-sensitive c-reactive protein (low grade inflammation) and fasting hyperinsulinemia. Endocr J. 2005;52:89–94.

    Article  CAS  PubMed  Google Scholar 

  40. Ozcan O, Cakir E, Yaman H, Akgul EO, Erturk K, Beyhan Z. The effects of thyroxine replacement on the levels of serum asymmetric dimethylarginine (ADMA) and other biochemical cardiovascular risk markers in patients with subclinical hypothyroidism. Clin Endocrinol (Oxf). 2005;63:203–6.

    Article  CAS  Google Scholar 

  41. Aksoy DY, Cinar N, Harmanci A, et al. Serum resistin and high sensitive CRP levels in patients with subclinical hypothyroidism before and after L-thyroxine therapy. Med Sci Monit. 2013;19:210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peleg RK, Efrati S, Benbassat C, Fygenzo M, Golik A. The effect of levothyroxine on arterial stiffness and lipid profile in patients with subclinical hypothyroidism. Thyroid. 2008;18:825–30.

    Article  PubMed  Google Scholar 

  43. Sharma R, Sharma TK, Kaushik GG, Sharma S, Vardey SK, Sinha M. Subclinical hypothyroidism and its association with cardiovascular risk factors. Clin Lab. 2011;57:719–24.

    CAS  PubMed  Google Scholar 

  44. Iglesias P, Diez JJ. Influence of thyroid dysfunction on serum concentrations of adipocytokines. Cytokine. 2007;40:61–70.

    Article  CAS  PubMed  Google Scholar 

  45. Ozata M, Ozisik G, Bingol N, Corakci A, Gundogan MA. The effects of thyroid status on plasma leptin levels in women. J Endocrinol Invest. 1998;21:337–41.

    Article  CAS  PubMed  Google Scholar 

  46. Sesmilo G, Casamitjana R, Halperin I, Gomis R, Vilardell E. Role of thyroid hormones on serum leptin levels. Eur J Endocrinol. 1998;139:428–30.

    Article  CAS  PubMed  Google Scholar 

  47. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties, J Immunol. 2005;174:5789–95.

    Article  CAS  PubMed  Google Scholar 

  48. Filkova M, Haluzik M, Gay S, Senolt L. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clin Immunol. 2009;133:157–70.

    Article  CAS  PubMed  Google Scholar 

  49. Kok P, Roelfsema F, Frolich M, Meinders AE, Pijl H. Spontaneous diurnal thyrotropin secretion is enhanced in proportion to circulating leptin in obese premenopausal women. J Clin Endocrinol Metab. 2005;90:6185–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulhan Akbaba MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbaba, G., Berker, D., Isık, S. et al. Changes in the before and after thyroxine treatment levels of adipose tissue, leptin, and resistin in subclinical hypothyroid patients. Wien Klin Wochenschr 128, 579–585 (2016). https://doi.org/10.1007/s00508-015-0865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-015-0865-9

Keywords

Navigation