Skip to main content
Log in

Toward implementing efficient image processing algorithms on quantum computers

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Quantum information science is an interdisciplinary subject spanning physics, mathematics, and computer science. It involves finding new ways to apply natural quantum-mechanical effects, particularly superposition and entanglement, to information processing in an attempt to exceed the limits of traditional computing. In addition to promoting its mathematical and physical foundations, scientists and engineers have increasingly begun studying cross-disciplinary fields in quantum information processing, such as quantum machine learning, quantum neural networks, and quantum image processing (QIMP). Herein, we present an overview of QIMP consisting of a succinct review of state-of-the-art techniques along with a critical analysis of several key issues important for advancing the field. These issues include improving current models of quantum image representations, designing quantum algorithms for solving sophisticated operations, and developing physical equipment and software architecture for capturing and manipulating quantum images. The future directions identified in this work will be of interest to researchers working toward the greater realization of QIMP-based technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Abd El-Latif AA, Abd-El-Atty B, Hossain MS, Rahman MA, Alamri A, Gupta BB (2018) Efficient quantum information hiding for remote medical image sharing. IEEE Access 6:21075–21083

    Google Scholar 

  • Abd El-Latif AA, Abd-El-Atty B, Venegas-Andraca SE (2019) A novel image steganography technique based on quantum substitution boxes. Opt Laser Technol 116:92–102

    MATH  Google Scholar 

  • Acar A, Aksu H, Uluagac AS, Conti M (2018) A survey on homomorphic encryption schemes: theory and implementation. ACM Comput Surv 51(4):1–35

    Google Scholar 

  • Aïmeur E, Brassard G, Gambs S (2007) Quantum clustering algorithms. In: Proceedings of the 24th international conference on machine learning (ICML), New York, pp 1–8

  • Banaszek K, Cramer M, Gross D (2012–2013) Focus issue on quantum tomography (31 articles). New J Phys 14–15: 125020

  • Biamonte J (2019) Universal variational quantum computation. arXiv:1903.04500,

  • Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549:195–202

    Google Scholar 

  • Bryan K, Leise T (2006) The \$25,000,000,000 eigenvector: the linear algebra behind google. SIAM Rev 48(3):569–581

    MathSciNet  MATH  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Google Scholar 

  • Caraiman S, Manta VI (2015a) Image segmentation on a quantum computer. Quantum Inf Process 14(5):1693–1715

    MathSciNet  MATH  Google Scholar 

  • Caraiman S, Manta V (2015b) Image segmentation on a quantum computer. Quantum Inf Process 14:1693

    MathSciNet  MATH  Google Scholar 

  • Castillo O, Sanchez MA, Gonzalez CI, Martinez GE (2017) Review of recent type-2 fuzzy image processing applications. Information 8(3):97

    Google Scholar 

  • Chen K, Yan F, Hirota K, Zhao J (2019) Quantum implementation of powell’s conjugate direction method. J Adv Comput Intell Intell Inf 23(4):726–734

  • Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D (2003) Exponential algorithmic speedup by quantum walk. In: Proceedings of the 35th ACM symposium on the theory of computation (STOC), pp 59–68

  • Co H, Peña Tapia E, Tanetani N, Arias Zapata JP, García Sánchez-Carnerero L. Quantum image processing using QISKIT. https://qiskit.org/experiments/quantum-img-processing/. Retrieved on 10 Feb, 2020

  • Cruz-Santos W, Venegas-Andraca SE, Lanzagorta M (2019) A QUBO formulation of minimum multicut problem instances in trees for D-Wave quantum annealers. Sci Rep 9:17216

    Google Scholar 

  • Defienne H, Reichert M, Fleischer JW, Faccio D (2019) Quantum image distillation. Sci Adv 5(10):eaax0307

    Google Scholar 

  • Du S, Qiu D, Mateus P, Gruska J (2019) Enhanced double random phase encryption of quantum images. Results Phys 13:102161

    Google Scholar 

  • Duda R, Hart P (1973) Pattern classification and scene analysis. Wiley, London, p 271272

    MATH  Google Scholar 

  • El-Latif AAA, Abd-El-Atty B, Talha M (2018) Robust encryption of quantum medical images. IEEE Access 6:1073–1081

    Google Scholar 

  • Fiete RD (2012) Formation of a digital image: the imaging chain simplified. SPIE, Bellingham

    Google Scholar 

  • Gobul GH, Van Loan CF (1992) Matrix computations, 1st edn. Baltimore: Johns Hopkins University Press, 1983 Press WH, Teukolsky SA, Vetterling WT, and Flannery BP. Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge

  • Gonzalez RC, Woods RE (2018) Digital image processing. Pearson, New York

    Google Scholar 

  • Gonzalez CI, Melin P, Castro JR, Castillo O, Mendoza O (2016) Optimization of interval type-2 fuzzy systems for image edge detection. Appl Soft Comput 47:631–643

    Google Scholar 

  • Gonzalez CI, Melin P, Castro JR, Castillo O (2019) Edge detection approach based on type-2 fuzzy images. J Multiple Valued Logic Soft Comput 33(4–5):431–458

    MathSciNet  Google Scholar 

  • Grigoryan AM, Agaian SS (2020) New look on quantum representation of images: Fourier transform representation. Quantum Inf Process 19:148

    MathSciNet  MATH  Google Scholar 

  • Heidari S, Farzadnia E (2017) A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf Process 16(10):1–28

    MathSciNet  MATH  Google Scholar 

  • Heidari S, Naseri M (2016) A novel LSB based quantum watermarking. Int J Theor Phys 55(10):4205–4218

    MATH  Google Scholar 

  • Horn D, Gottlieb A (2001) Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys Rev Lett 88(1):018702

    Google Scholar 

  • Hou C, Liu X, Feng S (2020) Quantum image scrambling algorithm based on discrete baker map. Mod Phys Lett A 35(17):2050145

    MathSciNet  MATH  Google Scholar 

  • Hu W, Zhou R, El-Rafei A, Jiang S (2019a) Quantum image watermarking algorithm based on Haar wavelet transform. IEEE Access 7:121303–121320

    Google Scholar 

  • Hu W, Zhou R, El-Rafei A, Jiang S (2019b) Quantum image watermarking algorithm based on haar wavelet transform. IEEE Access 7:121303–121320

    Google Scholar 

  • Hu WW, Zhou RG, Liu XA, Luo J, Luo GF (2020) Quantum image steganography algorithm based on modified exploiting modification direction embedding. Quantum Inf Process 19(5):1–28

    MathSciNet  MATH  Google Scholar 

  • Iliyasu AM (2018) Roadmap to talking quantum movies: a contingent inquiry. IEEE Access 7:23864–23913

    Google Scholar 

  • Iliyasu AM, Le PQ, Dong F, Hirota K (2012) Watermarking and authentication of quantum images based on restricted geometric transformations. Inf Sci 186(1):126–149

    MathSciNet  MATH  Google Scholar 

  • Jiang N, Wang L (2015) Quantum image scaling using nearest neighbor interpolation. Quantum Inf Process 14(5):1559–1571

    MathSciNet  MATH  Google Scholar 

  • Jiang N, Zhao N, Wang L (2016) LSB based quantum image steganography algorithm. Int J Theor Phys 55(1):107–123

    MATH  Google Scholar 

  • Kiani BT, Villanyi A, Lloyd S. Quantum medical imaging algorithms. arXiv:2004.02036v3 [quant-ph]

  • Langville AN, Meyer CD (2006) Google’s pagerank and beyond: the science of search engine rankings. Princeton University Press, Princeton

  • Lanzagorta M (2011) Quantum radar. Morgan and Claypool (Synthesis Lectures on Quantum Computing), San Rafael

  • Le PQ, Iliyasu AM, Dong F, Hirota K (2010) Fast geometric transformations on quantum images. Int J Appl Math 40(3):113–123

    MathSciNet  MATH  Google Scholar 

  • Le PQ, Dong F, Hirota K (2011a) A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf Process 10:63–84

    MathSciNet  MATH  Google Scholar 

  • Le PQ, Iliyasu AM, Dong F, Kaoru H (2011b) Efficient color transformations on quantum images. J Adv Comput Intell Intell Inf 15(6):698–706

    Google Scholar 

  • Le PQ, Iliyasu AM, Dong F, Hirota K (2011c) Strategies for designing geometric transformations on quantum images. Theoret Comput Sci 412(15):1406–1418

    MathSciNet  MATH  Google Scholar 

  • Li H, Fan P, Xia H, Peng H, Long G (2020) Efficient quantum arithmetic operation circuits for quantum image processing. Sci China Phys Mech Astron 63:280311

    Google Scholar 

  • Loke T, Tang JW, Rodriguez J, Small M, Wang JB (2017) Comparing classical and quantum PageRanks. Quantum Inf Process 16:25

    MATH  Google Scholar 

  • Lugiato LA, Gatti A, Brambilla E (2002) Quantum imaging. J Opt B: Quantum Semiclass Opt 4(3):S176–S183

    Google Scholar 

  • Luo G, Zhou RG, Hu W, Luo J, Liu X, Ian H (2018) Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf Process 17(11):1–19

    MathSciNet  MATH  Google Scholar 

  • Luo J, Zhou RG, Luo G, Li Y, Liu G (2019) Traceable quantum steganography scheme based on pixel value differencing. Sci Rep 9(1):1–12

    Google Scholar 

  • Ma S, Khalil A, Hajjdiab H, Eleuch H (2020) Quantum dilation and erosion. Appl Sci 10(11):4040

    Google Scholar 

  • McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18:023023

    MATH  Google Scholar 

  • McGeoch C (2012) A guide to experimental algorithmics. Cambridge University Press, Cambridge

    Google Scholar 

  • Melin P, Gonzalez CI, Castro JR, Mendoza O, Castillo O (2014) Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans Fuzzy Syst 22(6):1515–1525

    Google Scholar 

  • Miyake S, Nakamae K (2016) A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf Process 15(5):1849–1864

    MathSciNet  MATH  Google Scholar 

  • Naseri M, Heidari S, Baghfalaki M, Gheibi R, Batle J, Farouk A, Habibi A et al (2017) A new secure quantum watermarking scheme. Optik 139:77–86

    Google Scholar 

  • Nielsen MA, Chuang IL (2000) Quantum computatation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  • Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the Web. Technical Report 1999-66. Stanford InfoLab

  • Pan VY, Chen ZQ (1999) The complexity of the matrix eigenproblem. In: Proceedings of the 31st annual ACM symposium on theory of computing, pp 507–516

  • Paparo GD, Martin-Delgado MA (2012) Google in a quantum network. Sci Rep 2:444

    Google Scholar 

  • Qu Z, Cheng Z, Liu W, Wang X (2019) A novel quantum image steganography algorithm based on exploiting modification direction. Multimed Tools Appl 78(7):7981–8001

    Google Scholar 

  • Qu Z, Chen S, Wang X (2020) A secure controlled quantum image steganography algorithm. Quantum Inf Process 19(10):1–25

    MathSciNet  MATH  Google Scholar 

  • Rosenfeld A (1969) Picture processing by computer. ACM Comput Surv 1(3):147–174

    MATH  Google Scholar 

  • Rosenfeld A (1973) Progress in picture processing: 1969–1971. ACM Comput Surv 5(2):81–104

    MATH  Google Scholar 

  • Ross OHM (2019) A review of quantum-inspired metaheuristics: going from classical computers to real quantum computers. IEEE Access 8:814–838

    Google Scholar 

  • Sarma AD, Molla AR, Pandurangan G, Upfal E (2015) Fast distributed PageRank computation. Theoret Comput Sci 561:113–121

    MathSciNet  MATH  Google Scholar 

  • Serra J (1984) Image analysis and mathematical morphology, vol 1 and 2. Academic Press, London

    Google Scholar 

  • Shapiro JH, Boyd RW (2012) Response to the physics of ghost imaging-nonlocal interference or local intensity fluctuation correlation? Quantum Inf Process 11:1003–1011

    MATH  Google Scholar 

  • Shih Y (2007) Quantum imaging. IEEE J Sel Top Quantum Electron 13(4):1016–1030

    Google Scholar 

  • Shih Y (2012) The physics of ghost imaging-nonlocal interference or local intensity fluctuation correlation? Quantum Inf Process 11:995–1011

    MATH  Google Scholar 

  • Sobel I (2014) An isotropic 3\(\times \) 3 image gradient operator (history and definition of the sobel operator). https://www.researchgate.net/publication/239398674. Retrieved on 07 Feb, 2020

  • Song X, Wang S, Abd El-Latif AA, Niu X (2014) Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Syst 20(4):379–388

    Google Scholar 

  • Trugenberger CA (2002) Quantum pattern recognition. Quantum Inf Process 1(6):471–493

    MathSciNet  Google Scholar 

  • Venegas-Andraca SE, Bose S (2003) Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the international conference on artificial intelligence (IJCAI), pp 1563–1564

  • Venegas-Andraca SE (2005) Discrete quantum walks and quantum image processing. DPhil thesis, The University of Oxford, London

  • Venegas-Andraca SE (2012) Quantum walks: a comprehensive review. Quantum Inf Process 11(5):1015–1106

    MathSciNet  MATH  Google Scholar 

  • Venegas-Andraca SE (2015) Introductory words: special issue on quantum image processing published by quantum information processing. Quantum Inf Process 14:1535–1537

    MathSciNet  MATH  Google Scholar 

  • Venegas-Andraca SE, Ball JL (2010) Processing images in entangled quantum systems. Quantum Inf Process 9(1):1–11

    MathSciNet  Google Scholar 

  • Venegas-Andraca SE, Bose S (2003) Storing, processing, and retrieving an image using quantum mechanics. SPIE Conf Quantum Inf Comput 5105:137–147

    Google Scholar 

  • Venegas-Andraca SE, Cruz-Santos W, McGeoch C, Lanzagorta M (2018) A cross-disciplinary introduction to quantum annealing-based algorithms. Contemp Phys 59(2):174–197

    Google Scholar 

  • Wang J, Jiang N, Wang L (2015) Quantum image translation. Quantum Inf Process 14(5):1589–1604

    MathSciNet  MATH  Google Scholar 

  • Wilkinson JH (1965) The algebraic eigenvalue problem, 1st edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Xia H, Xiao Y, Song S, Li H (2020) Quantum circuit design of approximate median filtering with noise tolerance threshold. Quantum Inf Process 19:1–23

    MathSciNet  MATH  Google Scholar 

  • Xu P, He Z, Qiu T, Ma H (2020) Quantum image processing algorithm using edge extraction based on kirsch operator. Opt Express 28(9):12508–12517

    Google Scholar 

  • Yan F, Venegas-Andraca SE (2020) Quantum image processing. Springer, Berlin

    MATH  Google Scholar 

  • Yan F, Iliyasu AM, Venegas-Andraca SE (2016a) A survey of quantum image representations. Quantum Inf Process 15:1–35

    MathSciNet  MATH  Google Scholar 

  • Yan F, Iliyasu AM, Yang H, Hirota K (2016b) Strategy for quantum image stabilization. Sci China Inf Sci 59:052102

    Google Scholar 

  • Yan F, Iliyasu AM, Le PQ (2017a) Quantum image processing: a review of advances in its security technologies. Int J Quantum Inf 15(3):1730001

    MathSciNet  MATH  Google Scholar 

  • Yan F, Chen K, Venegas-Andraca SE, Zhao J (2017b) Quantum image rotation by an arbitrary angle. Quantum Inf Process 16:282

    MathSciNet  MATH  Google Scholar 

  • Yan F, Iliyasu AM, Guo Y, Yang H (2018a) Flexible representation and manipulation of audio signals on quantum computers. Theoret Comput Sci 752:71–85

    MathSciNet  MATH  Google Scholar 

  • Yan F, Jiao S, Iliyasu AM, Jiang Z (2018b) Chromatic framework for quantum movies and applications in creating montages. Front Comput Sci 12(4):736–748

    Google Scholar 

  • Yan F, Li N, Hirota K (2021a) QHSL: a quantum hue, saturation, and lightness color model. Inf Sci 577:196-213

    MathSciNet  Google Scholar 

  • Yan F, Zhao S, Venegas-Andraca SE, Hirota K (2021b) Implementing bilinear interpolation with quantum images. Digital Signal Process 117:103149

    Google Scholar 

  • Yang Y, Pan Q, Sun S, Xu P (2015) Novel image encryption based on quantum walks. Sci Rep 5:7784

    Google Scholar 

  • Youssry A, Ferrie C, Tomamichel M (2019) Efficient online quantum state estimation using a matrix-exponentiated gradient method. New J Phys 21:033006

    MathSciNet  Google Scholar 

  • Yu C, Gao F, Liu C, Huynh D, Reynolds M, Wang J (2019) Quantum algorithm for visual tracking. Phys Rev A 99:022301

    Google Scholar 

  • Yuan S, Mao X, Li T, Xue Y, Chen L, Xiong Q (2015) Quantum morphology operations based on quantum representation model. Quantum Inf Process 14:1625

    MathSciNet  MATH  Google Scholar 

  • Zhang Y, Lu K, Gao Y, Wang M (2013a) NEQR: a novel enhanced quantum representation of digital images. Quantum Inf Process 12:2833–2860

    MathSciNet  MATH  Google Scholar 

  • Zhang WW, Gao F, Liu B, Wen QY, Chen H (2013b) A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf Process 12(2):793–803

    MathSciNet  MATH  Google Scholar 

  • Zhang Y, Lu K, Gao Y (2015) QSobel: a novel quantum image edge extraction algorithm. Sci China Inf Sci 58:1–13

    MATH  Google Scholar 

  • Zhao S, Yan F, Chen K, Yang H (2021) Interpolation-based high capacity quantum image steganography. Int J Theor Phys 60:3722–3743 (2021). https://doi.org/10.1007/s10773-021-04891-0

  • Zhou RG, Luo J, Liu X, Zhu C, Wei L, Zhang X (2018) A novel quantum image steganography scheme based on LSB. Int J Theor Phys 57(6):1848–1863

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by Tecnologico de Monterrey and CONACyT (SNI No. 41594, Fronteras Ciencia 1007).

Author information

Authors and Affiliations

Authors

Contributions

FY Conceptualization, Methodology, Data curation, Visualization, Writing-original draft, Writing-review and editing. SEV-A Funding acquisition, Conceptualization, Formal analysis, Validation, Writing-original draft, Writing-review and editing. Kaoru Hirota: Investigation, Writing-original draft, Writing-review and editing, Supervision.

Corresponding author

Correspondence to Salvador E. Venegas-Andraca.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

All authors read and agreed to participate in the final manuscript.

Consent for publication

All authors agreed to publish this paper, if accepted.

Additional information

Communicated by Oscar Castillo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Venegas-Andraca, S.E. & Hirota, K. Toward implementing efficient image processing algorithms on quantum computers. Soft Comput 27, 13115–13127 (2023). https://doi.org/10.1007/s00500-021-06669-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06669-2

Keywords

Navigation