Skip to main content

Advertisement

Log in

An optimization drone routing model for inspecting wind farms

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The use of wind turbines to generate electricity is growing worldwide. They comprise an extended area of hundreds of square miles, making the inspection process difficult and time-consuming. Recently, there has been an increasing interest in using a drone, or also known as unmanned aircraft systems, for inspecting wind turbines. Motivated by leveraging drone technology, this paper provides a routing optimization model to reduce the total operation time for inspecting a wind farm. We assume that one drone and one ground vehicle which carries the drone and extra batteries and charging equipment are available. The optimization model is solved in two steps. The first step clusters the wind turbines and optimizes the drone routing in each cluster by solving the classical traveling salesman problem using an integer linear programming model. The second step optimizes the ground vehicle routing by solving the equality generalized traveling salesman problem using an integer linear programming model. We test our proposed model using three case studies created by using actual wind farm locations. We compare the results with two models. One model assumes no clustering of the wind turbines, and the other model uses a greedy approach for determining the ground vehicle route. The results show that the proposed model is more efficient at different flight speeds and endurances. Also, we confirm that the efficiency increases as the drone flies faster or it has longer flight endurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agatz N, Bouman P, Schmidt M (2018) Optimization approaches for the traveling salesman problem with drone. Transp Sci 52(4):965–981

    Google Scholar 

  • American Wind Energy Association (2018) AWEA state wind energy facts. https://www.awea.org/resources/fact-sheets/state-facts-sheets. Accessed 28 Oct 2018

  • Arzamendia M, Gregor D, Reina DG, Toral SL (2019) An evolutionary approach to constrained path planning of an autonomous surface vehicle for maximizing the covered area of Ypacarai Lake. Soft Comput 23(5):1723–1734

    Google Scholar 

  • Bouman P, Agatz N, Schmidt M (2018) Dynamic programming approaches for the traveling salesman problem with drone. Networks 72(4):528–542

    MathSciNet  Google Scholar 

  • Boysen N, Briskorn D, Fedtke S, Schwerdfeger S (2018) Drone delivery from trucks: drone scheduling for given truck routes. Networks 72(4):506–527

    MathSciNet  MATH  Google Scholar 

  • Capots M (2017) Self-flying drones and wind turbine blades: the new way of collecting data. Office of Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/articles/self-flying-drones-and-wind-turbine-blades-new-way-collecting-data. Accessed 28 Oct 2018

  • Carrabs F, Cerrone C, Cerulli R, Gaudioso M (2017a) A novel discretization scheme for the close enough traveling salesman problem. Comput Oper Res 78:163–171

    MathSciNet  MATH  Google Scholar 

  • Carrabs F, Cerrone C, Cerulli R, D’Ambrosio C (2017b) Improved upper and lower bounds for the close enough traveling salesman problem. In: International conference on green, pervasive, and cloud computing, pp 165–177

  • Carrabs F, Cerrone C, Cerulli R, Golden B (2020) An adaptive heuristic approach to compute upper and lower bounds for the close-enough traveling salesman problem. INFORMS J Comput. https://doi.org/10.1287/ijoc.2020.0962

  • Chang YS, Lee HJ (2018) Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Syst Appl 104:307–317

    Google Scholar 

  • Chen L, Peng J, Liu Z, Zhao R (2017a) Pricing and effort decisions for a supply chain with uncertain information. Int J Prod Res 55(1):264–284

    Google Scholar 

  • Chen L, Peng J, Zhang B (2017b) Uncertain goal programming models for bicriteria solid transportation problem. Appl Soft Comput 51:49–59

    Google Scholar 

  • Chowdhury S, Emelogu A, Marufuzzaman M, Nurre SG, Bian L (2017) Drones for disaster response and relief operations: a continuous approximation model. Int J Prod Econ 188:167–184

    Google Scholar 

  • Collins G, Clausse A, Twining D (2017) Enabling technologies for autonomous offshore inspections by heterogeneous unmanned teams. In: OCEANS 2017-Aberdeen, pp 1–5

  • Coutinho WP, Nascimento RQ, Pessoa AA, Subramanian A (2016) A branch-and-bound algorithm for the close-enough traveling salesman problem. INFORMS J Comput 28(4):752–765

    MathSciNet  MATH  Google Scholar 

  • Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. J Oper Res Soc Am 2(4):393–410

    MathSciNet  MATH  Google Scholar 

  • de Freitas JC, Penna PHV (2018) A randomized variable neighborhood descent heuristic to solve the flying sidekick traveling salesman problem. Electron Notes Discrete Math 66:95–102

    MathSciNet  MATH  Google Scholar 

  • Deign J (2016) Fully automated drones could double wind turbine inspection rates. New Energy Update. http://newenergyupdate.com/wind-energy-update/fully-automated-drones-could-double-wind-turbine-inspection-rates. Accessed 28 Oct 2018

  • Denholm P, Hand M, Jackson M, Ong S (2009) Land-use requirements of modern wind power plants in the United States. https://www.nrel.gov/docs/fy09osti/45834.pdf. National Renewable Energy Laboratory. Accessed 28 Oct 2018

  • Dorling K, Heinrichs J, Messier GG, Magierowski S (2017) Vehicle routing problems for drone delivery. IEEE Trans Syst Man Cybern Syst 47(1):70–85

    Google Scholar 

  • Faigl J, Váňa P, Deckerová J (2019) Fast heuristics for the 3-D multi-goal path planning based on the generalized traveling salesman problem with neighborhoods. IEEE Robot Autom Lett 4(3):2439–2446

    Google Scholar 

  • Ferrandez SM, Harbison T, Weber T, Sturges R, Rich R (2016) Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. J Ind Eng Manag 9(2):374–388

    Google Scholar 

  • Fischetti M, Salazar González JJ, Toth P (1997) A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper Res 45(3):378–394

    MathSciNet  MATH  Google Scholar 

  • Galleguillos C, Zorrilla A, Jimenez A, Diaz L, Montiano ÁL, Barroso M, Viguria A, Lasagni F (2015) Thermographic non-destructive inspection of wind turbine blades using unmanned aerial systems. Plast Rubber Compos 44(3):98–103

    Google Scholar 

  • Gambella C, Lodi A, Vigo D (2018) Exact solutions for the carrier–vehicle traveling salesman problem. Transp Sci 52(2):320–330

    Google Scholar 

  • Giosa ID, Tansini IL, Viera IO (2002) New assignment algorithms for the multi-depot vehicle routing problem. J Oper Res Soc 53(9):977–984

    MATH  Google Scholar 

  • Ha QM, Deville Y, Pham QD, Hà MH (2018) On the min-cost traveling salesman problem with drone. Transp Res Part C Emerg Technol 86:597–621

    Google Scholar 

  • Hong I, Kuby M, Murray AT (2018) A range-restricted recharging station coverage model for drone delivery service planning. Transp Res Part C Emerg Technol 90:198–212

    Google Scholar 

  • Jeong HY, Song BD, Lee S (2019) Truck-drone hybrid delivery routing: payload-energy dependency and no-fly zones. Int J Prod Econ 214:220–233

    Google Scholar 

  • Kim S, Moon I (2018) Traveling salesman problem with a drone station. IEEE Trans Syst Man Cybern Syst 49(1):42–52

    Google Scholar 

  • Kiran WS, Smys S, Bindhu V (2020) Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks. Soft Comput 24:11805–11818

    Google Scholar 

  • Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    MathSciNet  MATH  Google Scholar 

  • Luo Z, Liu Z, Shi J (2017) A two-echelon cooperated routing problem for a ground vehicle and its carried unmanned aerial vehicle. Sensors 17(5):1144

    Google Scholar 

  • Marinelli M, Caggiani L, Ottomanelli M, Dell’Orco M (2018) En route truck–drone parcel delivery for optimal vehicle routing strategies. IET Intel Transp Syst 12(4):253–261

    Google Scholar 

  • Mathew N, Smith SL, Waslander SL (2015) Planning paths for package delivery in heterogeneous multirobot teams. IEEE Trans Autom Sci Eng 12(4):1298–1308

    Google Scholar 

  • Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulation of traveling salesman problems. J ACM 7(4):326–329

    MathSciNet  MATH  Google Scholar 

  • Murray CC, Chu AG (2015) The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp Res Part C Emerg Technol 54:86–109

    Google Scholar 

  • Murugesan VP, Murugesan P (2020) A new initialization and performance measure for the rough k-means clustering. Soft Comput 24:11605–11619

    Google Scholar 

  • Natarajan YJ, Nachimuthu DS (2020) New SVM kernel soft computing models for wind speed prediction in renewable energy applications. Soft Comput 24:11441–11458

    Google Scholar 

  • Otto A, Agatz N, Campbell J, Golden B, Pesch E (2018) Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks 72(4):411–458

    MathSciNet  Google Scholar 

  • Poikonen S, Golden B (2020) Multi-visit drone routing problem. Comput Oper Res 113:104802

    MathSciNet  MATH  Google Scholar 

  • Poikonen S, Wang X, Golden B (2017) The vehicle routing problem with drones: extended models and connections. Networks 70(1):34–43

    MathSciNet  MATH  Google Scholar 

  • Ponza A (2016) Optimization of drone-assisted parcel delivery. Master Degree Thesis, University Degli Studi Di Padova

  • Rabta B, Wankmüller C, Reiner G (2018) A drone fleet model for last-mile distribution in disaster relief operations. Int J Disaster Risk Reduct 28:107–112

    Google Scholar 

  • Salhi S, Nagy G (1999) A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. J Oper Res Soc 50(10):1034–1042

    MATH  Google Scholar 

  • Savuran H, Karakaya M (2016) Efficient route planning for an unmanned air vehicle deployed on a moving carrier. Soft Comput 20(7):2905–2920

    Google Scholar 

  • Schäfer BE, Picchi D, Engelhardt T, Abel D (2016) Multicopter unmanned aerial vehicle for automated inspection of wind turbines. In: 2016 24th mediterranean conference on control and automation, pp 244–249

  • Semet F (1995) A two-phase algorithm for the partial accessibility constrained vehicle routing problem. Ann Oper Res 61(1):45–65

    MathSciNet  MATH  Google Scholar 

  • Stokkeland M, Klausen K, Johansen TA (2015) Autonomous visual navigation of unmanned aerial vehicle for wind turbine inspection. In: 2015 International conference on unmanned aircraft systems, pp 998–1007

  • Sundar K, Rathinam S (2014) Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots. IEEE Trans Autom Sci Eng 11(1):287–294

    Google Scholar 

  • Sundar K, Rathinam S (2017) Algorithms for heterogeneous, multiple depot, multiple unmanned vehicle path planning problems. J Intell Robot Syst 88(2–4):513–526

    Google Scholar 

  • U.S. Energy Information Administration (2018) Annual energy outlook 2018 with projections to 2050

  • Wang Z, Guo J, Zheng M, Wang Y (2015) Uncertain multiobjective traveling salesman problem. Eur J Oper Res 241(2):478–489

    MathSciNet  MATH  Google Scholar 

  • Wang X, Poikonen S, Golden B (2017) The vehicle routing problem with drones: several worst-case results. Optim Lett 11(4):679–697

    MathSciNet  MATH  Google Scholar 

  • Wang X, Golden B, Wasil E (2019) A steiner zone variable neighborhood search heuristic for the close-enough traveling salesman problem. Comput Oper Res 101:200–219

    MathSciNet  MATH  Google Scholar 

  • Yang X, Jing F, Ma N, Nie F (2020) Supply chain pricing and effort decisions with the participants’ belief under the uncertain demand. Soft Comput 24:6483–6497

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Valenzuela.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: nomenclature

Indices

i, j, l

Wind turbines

a,b

Clusters

Sets

N

Set of the wind turbines and depot

\( N^{a} \)

Set of the wind turbines in cluster a

S

Subset of \( N^{a} \)

K

Set of the clusters

Parameters

FS

Flying speed of the drone (mph)

FE

Flight endurance of the drone (min)

GS

Moving speed of the ground vehicle (mph)

U

Number of wind turbines

I

Inspection time for a wind turbine (min)

P

Time for conducting pre- and post-flight procedures (min)

\( G_{ij} \)

Moving time between wind turbine i to wind turbine j by the ground vehicle (min)

\( F_{ij} \)

Flight time between wind turbine i to wind turbine j by the drone (min)

Variables

C

Cluster assignment vector

T

Total operation time (min)

\( T^{D} \)

Total operation time of the drone (min)

\( T^{G} \)

Total operation time of the ground vehicle (min)

\( T^{P} \)

Total operation time for conducting pre- and post-flight procedures (min)

\( t_{a}^{D} \)

Total flight time of the drone between wind turbines in cluster a (min)

k

Number of clusters

\( m_{a} \)

Number of wind turbines in cluster a

\( x_{ij} \)

Binary decision variable that equals 1 if the ground vehicle moves from wind turbine i to wind turbine j, and 0 otherwise

\( y_{ab} \)

Binary decision variable that equals 1 if the ground vehicle moves from cluster a to cluster b, and 0 otherwise

\( z_{ij} \)

Binary decision variable that equals 1 if the drone flies from wind turbine i to wind turbine j, and 0 otherwise.

\( u \)

Integer variable representing the sequence number in which cluster is visited by the ground vehicle

Appendix 2: geographic locations of the wind turbines

Geographic locations of the wind turbines

No

Small-sized wind farm

Medium-sized wind farm

Large-sized wind farm

Latitude

Longitude

Latitude

Longitude

Latitude

Longitude

1

35.2360

− 102.2494

32.7673

− 99.5048

31.0812

− 100.7139

2

35.2350

− 102.2463

32.7662

− 99.5021

31.0834

− 100.7090

3

35.2297

− 102.2419

32.7663

− 99.4990

31.0851

− 100.7048

4

35.2287

− 102.2391

32.7668

− 99.4961

31.0851

− 100.7015

5

35.2289

− 102.2350

32.7682

− 99.4936

31.0851

− 100.6981

6

35.2279

− 102.2321

32.7694

− 99.4910

31.0851

− 100.6950

7

35.2289

− 102.2282

32.7688

− 99.4882

31.0855

− 100.6889

8

35.2278

− 102.2253

32.7679

− 99.4853

31.0854

− 100.6864

9

35.2267

− 102.2224

32.7683

− 99.4824

31.0855

− 100.6838

10

35.2279

− 102.2138

32.7690

− 99.4796

31.0854

− 100.6814

11

35.2268

− 102.2110

32.7701

− 99.4770

31.0854

− 100.6789

12

35.2276

− 102.1973

32.7709

− 99.4741

31.0993

− 100.7264

13

35.2266

− 102.1944

32.7665

− 99.4711

31.0967

− 100.7218

14

35.2300

− 102.1869

32.7664

− 99.4683

31.0972

− 100.7181

15

35.2289

− 102.1840

32.7764

− 99.5046

31.0962

− 100.7140

16

35.2290

− 102.1799

32.7765

− 99.5015

31.0966

− 100.7093

17

35.2280

− 102.1771

32.7857

− 99.5020

31.0969

− 100.7045

18

35.2269

− 102.1743

32.7865

− 99.4993

31.0961

− 100.7007

19

35.2278

− 102.1697

32.7874

− 99.4964

31.0961

− 100.6980

20

35.2348

− 102.1606

32.7870

− 99.4935

31.1036

− 100.6983

21

35.2336

− 102.1574

32.7853

− 99.4901

31.1042

− 100.6956

22

35.2438

− 102.1605

32.7834

− 99.4864

31.1061

− 100.6930

23

35.2447

− 102.1629

32.7910

− 99.4838

31.0696

− 100.6904

24

35.2456

− 102.1652

32.7908

− 99.4796

31.0696

− 100.6880

25

35.2363

− 102.1924

32.7897

− 99.4763

31.0696

− 100.6851

26

35.2373

− 102.1952

32.7841

− 99.4746

31.0696

− 100.6820

27

35.2375

− 102.2030

32.7767

− 99.4681

31.0696

− 100.6795

28

35.2387

− 102.2063

32.7751

− 99.4650

31.1235

− 100.7310

29

35.2466

− 102.1996

32.7729

− 99.4616

31.1240

− 100.7283

30

35.2443

− 102.2074

32.7652

− 99.4579

31.1243

− 100.7252

31

35.2454

− 102.2103

32.7669

− 99.4525

31.1243

− 100.7211

32

35.2344

− 102.2171

32.7660

− 99.4495

31.1233

− 100.7177

33

35.2354

− 102.2200

32.7653

− 99.4466

31.1235

− 100.7141

34

35.2374

− 102.2224

32.7653

− 99.4410

31.1356

− 100.7369

35

  

32.7654

− 99.4379

31.1347

− 100.7340

36

  

32.7652

− 99.4266

31.1328

− 100.7315

37

  

32.7653

− 99.4235

31.1359

− 100.6885

38

  

32.7652

− 99.4197

31.1312

− 100.6810

39

  

32.7651

− 99.4167

31.1318

− 100.6786

40

  

32.7655

− 99.4137

31.1471

− 100.7127

41

  

32.7685

− 99.4102

31.1479

− 100.7097

42

  

32.7789

− 99.4537

31.1477

− 100.7073

43

  

32.7786

− 99.4501

31.1470

− 100.7042

44

  

32.7900

− 99.4625

31.1406

− 100.7047

45

  

32.7888

− 99.4592

31.1414

− 100.7023

46

  

32.7898

− 99.4567

31.1458

− 100.6982

47

  

32.7903

− 99.4538

31.1452

− 100.6949

48

  

32.7891

− 99.4507

31.1088

− 100.6612

49

  

32.7886

− 99.4476

31.1078

− 100.6579

50

  

32.7875

− 99.4444

31.1100

− 100.6541

51

  

32.7873

− 99.4414

31.1089

− 100.6513

52

  

32.7873

− 99.4385

31.1041

− 100.6460

53

  

32.7867

− 99.4355

31.1053

− 100.6433

54

  

32.7825

− 99.4307

31.1088

− 100.6301

55

  

32.7778

− 99.4255

31.1083

− 100.6264

56

  

32.7789

− 99.4073

31.1100

− 100.6236

57

  

32.7789

− 99.4043

31.1110

− 100.6198

58

  

32.8056

− 99.4684

31.1024

− 100.6143

59

  

32.8065

− 99.4656

31.1015

− 100.6114

60

  

32.8069

− 99.4626

31.1001

− 100.6090

61

  

32.8060

− 99.4597

31.0999

− 100.6066

62

  

32.8034

− 99.4567

31.1323

− 100.6519

63

  

32.8023

− 99.4538

31.1330

− 100.6492

64

  

32.8015

− 99.4475

31.1322

− 100.6463

65

  

32.8012

− 99.4447

31.1310

− 100.6434

66

  

32.8007

− 99.4409

31.1306

− 100.6407

67

  

32.8011

− 99.4364

31.1295

− 100.6373

68

  

32.8012

− 99.4324

31.1264

− 100.6334

69

  

32.7997

− 99.4292

31.1252

− 100.6309

70

  

32.7986

− 99.4265

31.1198

− 100.6265

71

  

32.7968

− 99.4238

31.1225

− 100.6194

72

  

32.7905

− 99.4204

31.1196

− 100.6152

73

    

31.1514

− 100.6559

74

    

31.1504

− 100.6532

75

    

31.1490

− 100.6496

76

    

31.1510

− 100.6464

77

    

31.1532

− 100.6433

78

    

31.1560

− 100.6404

79

    

31.1543

− 100.6367

80

    

31.1538

− 100.6317

81

    

31.1530

− 100.6285

82

    

31.1640

− 100.6378

83

    

31.1643

− 100.6353

84

    

31.1660

− 100.6325

85

    

31.1656

− 100.6299

86

    

31.1660

− 100.6274

87

    

31.1655

− 100.6248

88

    

31.1652

− 100.6222

89

    

31.1613

− 100.6194

90

    

31.1620

− 100.6156

91

    

31.1653

− 100.6114

92

    

31.1589

− 100.6122

93

    

31.1589

− 100.6083

94

    

31.1617

− 100.6012

95

    

31.1664

− 100.5965

96

    

31.1519

− 100.6105

97

    

31.1568

− 100.6036

98

    

31.1661

− 100.5925

99

    

31.1628

− 100.5890

100

    

31.1539

− 100.5877

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baik, H., Valenzuela, J. An optimization drone routing model for inspecting wind farms. Soft Comput 25, 2483–2498 (2021). https://doi.org/10.1007/s00500-020-05316-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-05316-6

Keywords

Navigation