Skip to main content
Log in

Model-based control using interval type-2 fuzzy logic systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Type-2 fuzzy logic introduced new formalisms capable of overcoming the inherent uncertainties of approximating real-world processes by computational models. Yet, despite increasingly present in the nonlinear modeling literature, model-based control theory does not seem to be taking full advantage of the improvements that type-2 fuzzy logic provides. Therefore, the present work proposes the development of a new control methodology based on the generalized predictive control theory supported by interval type-2 Takagi–Sugeno fuzzy logic systems. The developed control system is based on locally linear approximations of the type-2 Takagi–Sugeno model and will be evaluated using a nonlinear process based on the yeast fermentation reaction. For comparison purposes, two additional generalized predictive control implementations based on a linear auto-regressive model with exogenous inputs and a type-1 Takagi–Sugeno fuzzy model will be used. The performance of the closed loop systems will be evaluated by subjecting the process to quick changes in the operation regime and to unmeasured external disturbances. The mean squared error, control effort and typical transient step response metrics (overshoot and settling time) will provide the benchmark criteria. The results achieved demonstrate that at the expense of a small increase in the computational effort, type-2 fuzzy logic systems improve the transient behavior of the closed loop system, presenting significant advantages when the controlled process is subject to unmodeled disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Åström K, Wittenmark B (2008) Adaptive control. Dover, London

    Google Scholar 

  • Camacho E, Bordons C (2007) Model predictive control, advanced textbooks in control and signal processing, 2nd edn. Springer, NewYork

    MATH  Google Scholar 

  • Castillo O, Melin P (2014) A review on interval type-2 fuzzy logic applications in intelligent control. Inf Sci 279:615–631

    Article  MathSciNet  MATH  Google Scholar 

  • Cervantes L, Castillo O, Soria J (2016) Hierarchical aggregation of multiple fuzzy controllers for global complex control problems. Appl Soft Comput 38:851–859

    Article  Google Scholar 

  • Chia-Feng J, Yu-Wei T (2008) A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans Fuzzy Syst 16(6):1411–1423

    Article  Google Scholar 

  • Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278

    Google Scholar 

  • Clarke D, Mohtadi C, Tuffs P (1987) Generalized predictive control—part I. The basic algorithm. Automatica 23(2):137–148

    Article  MATH  Google Scholar 

  • Greenfield S, Chiclana F, Coupland S, John R (2009) The collapsing method of defuzzification for discretized interval type-2 fuzzy sets. Inf Sci 179:2055–2069

    Article  MATH  Google Scholar 

  • Greenfield S, Chiclana F (2013) Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set. Int J Approx Reason 54(8):1013–1033

    Article  MathSciNet  MATH  Google Scholar 

  • Hägglund T (1983) New estimation techniques for adaptive control, Ph.D. thesis, Department of Automatic Control, Lund Institute of Technology, Sweden

  • Hagras H (2007) Type-2 FLC: a new generation of fuzzy controllers. IEEE Comput Intell Mag 2(1):30–43

    Article  Google Scholar 

  • Hu H, Wang Y, Cai Y (2012) Advantages of enhanced opposite direction searching algorithms for computing the centroid of an interval type-2 fuzzy set. Asian J Control 14(6):1–9

    MathSciNet  MATH  Google Scholar 

  • Khanesar, M, Kayacan Teshnehlab M, Kaynak O (2011) Levenberg Marquardt algorithm for training of type-2 fuzzy neuro system with a novel type-2 fuzzy membership function. IEEE Symposium on advances in type-2 fuzzy logic systems, pp 88–93

  • Kulhavý R (1985) Restricted exponential forgetting in real-time identification. IFAC Symposium on identification and system parameter estimation, pp 1143–1148

  • Kumbasar T, Eksin I, Guzelkaya M, Yesil E (2011a) Interval type-2 fuzzy inverse controller design in non-linear IMC structure. Eng Appl Artif Intell 24:996–1005

    Article  Google Scholar 

  • Kumbasar T, Eksin I, Guzelkaya M, Yesil E (2011b) Type-2 fuzzy model inverse controller design based on bb-bc optimization method. In: 18th World congress of the international federation of automatic control (IFAC)

  • Kumbasar T, Hagras H (2015) A gradient descent based online tuning mechanism for pi type single input interval type-2 fuzzy logic controllers. In: Proceedings of IEEE international conference on fuzzy systems

  • Ławryńczuk M (2014) Computationally efficient model predictive control algorithms—a neural network approach, studies in systems, decision and control, vol 3. Springer, Berlin

    MATH  Google Scholar 

  • Lin Y, Liao S, Chang J, Lin C (2014) Simplified interval type-2 fuzzy neural networks. IEEE Trans Neural Netw Learn Syst 25(5):959–969

    Article  Google Scholar 

  • Ljung L (1998) System identification: theory for the user. Pearson Education, NewYork

    Book  MATH  Google Scholar 

  • Luyben W (2007) Chemical reactor design and control. Wiley, NewYork

    Book  Google Scholar 

  • Mahfouf M, Linkens D, Abbod M (2000) Adaptive fuzzy TSK model-based predictive control using a CARIMA model structure. Chem Eng Res Des Process Control 78(4):590–596

    Google Scholar 

  • Maldonado Y, Castillo O, Mellin P (2014) A multi-objective optimization of type-2 fuzzy control speed in FPGA. Appl Soft Comput 24:1164–1174

    Article  Google Scholar 

  • Martinez-Soto R, Castillo O, Castro J (2014) Genetic algorithm optimization for type-2 non-singleton fuzzy logic controllers. Recent Adv Hybrid Approach Des Intell Syst 547:3–18

    Article  Google Scholar 

  • Martínez-Soto R, Castillo O, Aguilar L (2014) Type-1 and type-2 fuzzy logic controller design using a hybrid PSO-GA optimization method. Processing and mining complex data streams. Inf Sci 285:35–49

    Article  MATH  Google Scholar 

  • Melin P, Castillo O (2014) A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition, applied soft computing, vol 21. Elsevier, Amsterdam

  • Mendel J (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  • Mendel J (2004) Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 12(1):84–98

    Article  MathSciNet  Google Scholar 

  • Mendes J, Araujo R, Souza F (2013) Adaptive fuzzy identification and predictive control for industrial processes. Expert Syst Appl 40:6964–6975

    Article  Google Scholar 

  • Nagy Z (2007) Model-based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chem Eng J 127:95–109

    Article  Google Scholar 

  • Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) Medical data classification using interval type-2 fuzzy logic system and wavelets. Appl Soft Comput 30:812–822

    Article  Google Scholar 

  • Rossiter J (2004) Model-based predictive control: a practical approach, control series. CRC Press, Boca Raton

    Google Scholar 

  • Rubio-Solis A, Panoutsos G (2015) Interval type-2 radial basis function neural network: a modeling framework. IEEE Trans Fuzzy Syst 23(2):457–473

    Article  Google Scholar 

  • Su M, Rhinehart R (2010) A generalized TSK model with a novel rule antecedent structure: structure identification and parameter estimation. Comput Chem Eng 34(8):1199–1219

    Article  Google Scholar 

  • Ureña R, Chiclana F, Morente-Molinera J, Herrera-Viedma E (2015) Managing incomplete preference relations in decision making: a review and future trends. Inf Sci 302:14–32

    Article  MathSciNet  MATH  Google Scholar 

  • Wellstead P, Zarrop M (1991) Self-tuning systems, control and signal processing. Wiley, Hoboken

    MATH  Google Scholar 

  • Wu D (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848

    Article  Google Scholar 

  • Wu D (2013) Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans Fuzzy Syst 21(1):80–99

    Article  Google Scholar 

  • Wu D, Tan W (2005) Type-2 FLC modeling capability analysis. In: Proceeding of the 2005 IEEE international conference on fuzzy systems, pp 242–247

  • Wu D, Tan W (2006) A simplified type-2 fuzzy logic controller for real-time control. ISA Trans 45(4):503–516

    Article  Google Scholar 

  • Yen J, Wang L, Gillespie C (1998) Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans Fuzzy Syst 6(4):530–537

    Article  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  • Zadeh L (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao L (2010) Direct-inverse modeling control based on interval type-2 fuzzy neural network. In: Proceedings of the 29th Chinese control conference, pp 2630–2635

Download references

Acknowledgments

The authors acknowledge the support given by FCT—Foundation for Science and Technology, in the context of Ph.D. scholarship BD/71601/2010 and the IEETA Research Unit, funded by National Funds through FCT in the context of the projects UID/CEC/00127/2013 and Incentivo/EEI /UI0127/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rómulo Antão.

Ethics declarations

Conflict of interest

The authors Rómulo Antão, Alexandre Mota and Rui Martins declare that have no conflict of interests.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antão, R., Mota, A. & Martins, R.E. Model-based control using interval type-2 fuzzy logic systems. Soft Comput 22, 607–620 (2018). https://doi.org/10.1007/s00500-016-2358-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2358-9

Keywords

Navigation