Skip to main content
Log in

An efficient radial basis function neural network for hyperspectral remote sensing image classification

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A very simple radial basis function neural network (RBFNN) is investigated for hyperspectral remote sensing image classification. Its training can be analytically solved with a closed-form equation, and no parameter needs to be manually tuned. Its computational cost is much lower than the popular support vector machine (SVM). Surprisingly, such an RBFNN can achieve the performance that is similar to or even better than the SVM. By incorporating a simple spatial averaging filter or a Gaussian lowpass filter with negligible additional computational cost, classification accuracy can be further improved. Considering the large matrix inversion operation in the RBFNN when the number of training samples being very large, we also propose a parallel processing method to reduce computing time in matrix inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandridis A, Chondrodima E, Efthimiou E, Papadakis G, Vallianatos F, Triantis D (2014) Large earthquake occurrence estimation based on radial basis function neural networks. IEEE Trans Geosci Remote Sens 52(9):5443–5453

    Article  Google Scholar 

  • Benediktsson JA, Swain PH, Ersoy OK (1990) Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans Geosci Remote Sens 28(4):540–552

    Article  Google Scholar 

  • Benediktsson JA, Sveinsson JR (1995) Classification and feature extraction of AVIRIS data. IEEE Trans Geosci Remote Sens 33(9):1194–1205

    Article  Google Scholar 

  • Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Broomhead DS, Lowe D (1988) Multivariate functional interpolation and adaptive networks. Complex Syst 2:321–355

    MATH  MathSciNet  Google Scholar 

  • Bruzzone L, Prieto DF (1999) A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans Geosci Remote Sens 37(2):1179–1184

    Article  Google Scholar 

  • Carpenter GA, Gjaja MN, Gopal S, Woodcock CE (1997) ART neural networks for remote sensing: vegetation classification from Landsat TM and terrain data. IEEE Trans Geosci Remote Sens 35(2):308–325

    Article  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Del Frate F, Pacifici F, Schiavon G, Solimini C (2007) Use of neural networks for automatic classification from high-resolution images. IEEE Trans Geosci Remote Sens 45(4):800–809

    Article  Google Scholar 

  • Du Q (2007) Modified Fisher’s linear discriminant analysis for hyperspectral imagery. IEEE Geosci Remote Sens Lett 4(4):503–507

    Article  Google Scholar 

  • Du Q, Yang H (2008) Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 5(4):564–568

    Article  Google Scholar 

  • Er MJ, Wu S, Lu J, Toh HL (2002) Face recognition with radial basis function (RBF) neural networks. IEEE Trans Neural Netw 13(3):697–710

    Article  Google Scholar 

  • Fernandez-Navarro F, Hervas-Martinez C, Gutierrez PA (2013) Generalised Gaussian radial basis function neural networks. Soft Comput 17:519–533

    Article  Google Scholar 

  • Garg S, Patra K, Pal SK, Chakraborty D (2008) Effect of different basis functions on a radial basis function network in prediction of drill flank wear from motor current signals. Soft Comput 12:777–787

    Article  Google Scholar 

  • Guilfoyle KJ, Althouse ML, Chang C-I (2001) A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks. IEEE Trans Geosci Remote Sens 39(10):2314–2318

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  • Haykin S (1996) Adaptive filter theory, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Heermann PD, Khazenie N (1992) Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Trans Geosci Remote Sens 30(1):81–88

    Article  Google Scholar 

  • Karayiannis NB, Randolph-Gips MM (2003) on the construction and training of reformulated radial basis function neural networks. IEEE Trans Neural Netw 14(4):835–846

    Article  MATH  Google Scholar 

  • Landgrebe DA (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19(1):17–28

    Article  Google Scholar 

  • Li J, Du Q, Li W, Li Y (2015) Optimizing extreme learning machine for hyperspectral image classification. J Appl Remote Sens 9:097296

    Article  Google Scholar 

  • Li W, Du Q (2014) Joint within-class collaborative representation for hyperspectral image classification. IEEE J Sel Topics Appl Earth Obs Remote Sens 7(6):2200–2208

    Article  Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  • Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281–294

    Article  Google Scholar 

  • Muchoney D, Williamson J (2001) A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data. IEEE Trans Geosci Remote Sens 39(9):1969–1977

    Article  Google Scholar 

  • Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

  • Powell MJD (1987) Radial basis functions for multivariate interpolation: a review. In: Mason JC, Cox MG (eds) Algorithms for approximation. Clarendon, Oxford, pp 143–167

    Google Scholar 

  • Samat A, Du P, Liu S, Li J, Cheng L (2014) E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 7(4):1060–1069

    Article  Google Scholar 

  • Tan K, Li E, Du Q, Du P (2014) An efficient semi-supervised classification approach for hyperspectral imagery. ISPRS J Photogramm Remote Sens 97:36–45

    Article  Google Scholar 

  • Tan K, Zhou S, Du Q (2015) Semi-supervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci Remote Sens Lett 12 (in press)

  • Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral-spatial classification of hyperspectral imagery based on partitional clustering technology. IEEE Trans Geosci Remote Sens 47(8):2973–2987

    Article  Google Scholar 

  • Wan LJ, Tang K, Li MZ, Zhong YF, Qin AKJ (2015) Collaborative active and semisupervised learning for hyperspectral remote sensing image classification. IEEE Trans Geosci Remote Sens 53(5):2384–2396

    Article  Google Scholar 

  • Yang H, Du Q, Chen G (2012) Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):544–554

    Article  Google Scholar 

  • Yang ZR (2006) A novel radial basis function neural network for discriminant analysis. IEEE Trans Neural Netw 17(3):604–612

    Article  Google Scholar 

  • Zhang B, O’Neill K, Kong J, Grzegorczyk TM (2008) Support vector machine and neural network classification of metallic objects using coefficients of the spheroidal MQS response modes. IEEE Trans Geosci Remote Sens 46(1):159–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Du.

Additional information

Communicated by Y.-S. Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Du, Q. & Li, Y. An efficient radial basis function neural network for hyperspectral remote sensing image classification. Soft Comput 20, 4753–4759 (2016). https://doi.org/10.1007/s00500-015-1739-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1739-9

Keywords

Navigation