Skip to main content
Log in

Approximation of the controls for the linear beam equation

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This article deals with the approximation of the boundary controls of a 1-D linear equation modeling the transversal vibrations of a hinged beam using a finite-difference space semi-discrete scheme. Due to the high frequency numerical spurious oscillations, the semi-discrete model is not uniformly controllable with respect to the mesh size and the convergence of the approximate controls corresponding to initial data in the finite energy space cannot be guaranteed. In this paper we analyze how do the initial data to be controlled and their discretization affect the result of the approximation process. We prove that the convergence of the scheme is ensured if the continuous initial data are sufficiently regular or if the highest frequencies of their discretization have been filtered out. In both cases, the minimal weighted \(L^2\)-norm discrete controls are shown to be convergent to the corresponding continuous one when the mesh size tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Avdonin SA, Ivanov SA (1995) Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Ball JM, Slemrod M (1979) Nonharmonic fourier series and the stabilization of distributed semi-linear control systems. Commun Pure Appl Math XXXII:555–587

    Article  MathSciNet  MATH  Google Scholar 

  3. Carthel C, Glowinski R, Lions J-L (1994) On exact and approximate boundary controllability for the heat equation: a numerical approach. JOTA 82:429–484

    Article  MathSciNet  MATH  Google Scholar 

  4. Coron JM (2007) Control and nonlinearity, vol 136 of Mathematical surveys and monographs. American Mathematical Society, Providence

    Google Scholar 

  5. Ervedoza S (2009) Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer Math 113:377–415

    Article  MathSciNet  MATH  Google Scholar 

  6. Ervedoza S, Zuazua E (2010) A systematic method for building smooth controls for smooth data. Discrete Contin Dyn Syst Ser B 14:1375–1401

    Article  MathSciNet  MATH  Google Scholar 

  7. Ervedoza S, Zuazua E (2009) Uniformly exponentially stable approximations for a class of damped systems. J Math Pures Appl 91:20–48

    Article  MathSciNet  MATH  Google Scholar 

  8. Glowinski R, Lions JL (1995) Exact and approximate controllability for distributed parameter systems. Acta Numer 4:159–328

    Article  MathSciNet  MATH  Google Scholar 

  9. Haraux A (1989) Une remarque sur la stabilisation de certains systemes du deuxieme ordre en temps. Port Math 46:245–258

    MathSciNet  MATH  Google Scholar 

  10. Hughes TJR (1987) The finite element method. Prentice Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  11. Infante JA, Zuazua E (1999) Boundary observability for the space semi-discretization of the 1-D wave equation. M2AN 33(2):407–438

    Article  MathSciNet  MATH  Google Scholar 

  12. Ingham AE (1936) Some trigonometric inequalities with applications to the theory of series. Math Zeits 41:367–379

    Article  MathSciNet  MATH  Google Scholar 

  13. Isaakson E, Keller HB (1996) Analysis of numerical methods. Wiley, New York

    Google Scholar 

  14. Jafard S, Micu S (2001) Estimates of the constants in generalized Ingham’s inequality and applications to the control of the wave equation. Asymptot Anal 28:181–214

    MathSciNet  MATH  Google Scholar 

  15. Kahane J-P (1962) Pseudo-périodicité et séries de Fourier lacunaires. Ann Scient Éc. Norm Sup 79:93–150

    MathSciNet  MATH  Google Scholar 

  16. Komornik V, Loreti P (2005) Fourier series in control theory. Springer-Verlag, New York

    MATH  Google Scholar 

  17. Leon L, Zuazua E (2002) Boundary controllability of the finite-difference space semi-discretizations of the beam equation. ESAIM Control Optim. Calc. Var. A Tribute to J.-L. Lions, Tome 2:827–862

  18. Lions J-L (1988) Controlabilité exacte, stabilisation et perturbations des systèmes distribués, vol 1. Masson, Paris

    MATH  Google Scholar 

  19. Lunardi A (2009) Interpolation theory. Lecture Notes Scuola Normale Superiore di Pisa (New Series). Edizioni della Normale, Pisa

    Google Scholar 

  20. Micu S (2002) Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer Math 91:723–768

    Article  MathSciNet  MATH  Google Scholar 

  21. Micu S, Zuazua EE (2005) An introduction to the controllability of partial differential equations. In: Sari T (ed) Quelques questions de theorie du controle. Collection Travaux en Cours Hermann, Hermann

    Google Scholar 

  22. Miller L (2012) Resolvent conditions for the control of unitary groups and their approximations. J Spectr Theory 2:1–55

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller L (2004) How violent are fast controls for Schrödinger and plate vibrations? Arch Ration Mech Anal 172:429–456

    Article  MathSciNet  MATH  Google Scholar 

  24. Seidman T, Yong J (1996) How violent are fast controls? Math Control Signals Syst 9:327–340

    Article  MathSciNet  MATH  Google Scholar 

  25. Tenenbaum G, Tucsnak M (2007) New blow-up rates for fast controls of Schrödinger and heat equations. J Differ Equ 243:70–100

    Article  MathSciNet  MATH  Google Scholar 

  26. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser advanced texts. Springer, Basel

  27. Vichnevetsky R, Bowles JB (1982) Fourier analysis of numerical approximations of hyperbolic equations, vol 5. SIAM Studies in Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  28. Young RM (1980) An introduction to nonharmonic fourier series. Academic Press, New York

    MATH  Google Scholar 

  29. Zuazua E (2005) Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev 47:197–243

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author was partially supported by Grant PN-II-ID-PCE-2011-3-0257 of the Romanian National Authority for Scientific Research, CNCS UEFISCDI and by Grant MTM2011-29306 funded by MICINN (Spain). The second and the third authors were partially supported by Grant PN-II-ID-PCE-2011-3-0257 of the Romanian National Authority for Scientific Research, CNCS UEFISCDI. The authors wish to thank the anonymous referees for their interesting and constructive suggestions which have greatly improved the first version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Rovenţa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micu, S., Rovenţa, I. & Temereancă, L.E. Approximation of the controls for the linear beam equation. Math. Control Signals Syst. 28, 12 (2016). https://doi.org/10.1007/s00498-016-0161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-016-0161-x

Keywords

Mathematics Subject Classification

Navigation