Skip to main content
Log in

Stabilization by Means of Time-varying Hybrid Feedback

  • Original Article
  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

In this work characterizations of the notion of non-uniform in time robust global asymptotic output stability for hybrid systems with disturbances are given. Based on the provided characterizations, it is shown that every asymptotically output controllable time-varying control system can be stabilized (in general non-uniformly in time) by means of time-varying hybrid feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albertini F, Sontag ED (1990) Continuous contol-lyapunov functions for asymptotic controllable time–varying systems. Int J Control 72(18):1630–1641

    MathSciNet  Google Scholar 

  2. Ancona F, Bressan A (1999) Patchy vector fields and asymptotic stabilization. ESAIM Control Optim Calculus Variations 4:445–471

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubin JP, Haddad G (2001) Cadenced runs of impulse and hybrid control systems. Int J Robust Nonlin Control 11:401–415

    Article  MATH  MathSciNet  Google Scholar 

  4. Clarke FH, Ledyaev YS, Sontag ED, Subbotin AI (1997) Asymptotic controllability implies feedback stabilization. IEEE Trans Automat Control 42(10):1394–1407

    Article  MATH  MathSciNet  Google Scholar 

  5. Hu B, Michel AN (2000) Stability analysis of digital control systems with time-varying sampling periods. Automatica 36:897–905

    Article  MATH  MathSciNet  Google Scholar 

  6. Hu B, Michel AN (2000) Robustness analysis of digital control systems with time-varying sampling periods. J Franklin Inst 337:117–130

    Article  MATH  MathSciNet  Google Scholar 

  7. Ingalls B, Wang Y (2001) On input-to-output stability for systems not uniformly bounded. In: Proceedings of NOLCOS 2001

  8. Karafyllis I, Tsinias J (2003) A Converse Lyapunov Theorem for Non-Uniform in Time Global Asymptotic Stability and its Application to Feedback Stabilization. SIAM J Control Optim 42(3):936–965

    Article  MATH  MathSciNet  Google Scholar 

  9. Karafyllis I, Tsinias J (2004) Non-uniform in time ISS and the small-gain theorem. IEEE Trans Automat Control 49(2):196–216

    Article  MathSciNet  Google Scholar 

  10. Karafyllis I (2004) The non-uniform in time small-gain theorem for a wide class of control systems with outputs. Eur J Control 10(4):307–323

    Article  MathSciNet  Google Scholar 

  11. Karafyllis I (2005) Non-uniform in time robust global asymptotic output stability. Syst Control Lett 54:181–193

    Article  MATH  MathSciNet  Google Scholar 

  12. Kellett CM, Teel AR (2004) Weak converse lyapunov theorems and control Lyapunov functions. SIAM J Contr Optim 46(6):1934–1959

    Article  MathSciNet  Google Scholar 

  13. Kolmanovsky I, McClamroch NH (1998) Hybrid feedback stabilization of rotational- translational actuator (RTAC) system. Int J Robust Nonlin Control 8:367–375

    Article  MATH  MathSciNet  Google Scholar 

  14. Krichman K (2000) A Lyapunov approach to detectability of nonlinear systems. PhD Thesis, Rutgers University

  15. Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  16. Ledyaev YS, Sontag ED (1999) A Lyapunov characterization of robust stabilization. Nonlin Anal Theo Meth Appl 37(7):813–840

    Article  MathSciNet  Google Scholar 

  17. Malisoff M, Rifford L, Sontag ED (2004) Global asymptotic controllability implies input-to-state stabilization. SIAM J Control Optim 42:2211–2238

    Article  MathSciNet  Google Scholar 

  18. Mancilla Aguilar JL, Garcia RA, Troparevsky MI (2000) Stability of a certain class of hybrid dynamical systems. Int J Control 73(15):1362–1374

    Article  MATH  MathSciNet  Google Scholar 

  19. Marchand N, Alamir M (2000) Asymptotic controllability implies continuous-discrete time feedback stabilization. In: Nonlinear control in the year 2000, vol. 2. Springer, Berlin Heidelberg Newyork, pp 63–79

  20. Morin P, Samson C (1999). Robust point-stabilization of nonlinear affine control systems. In: Aeyels D, Lamnabhi-Lagarrigue F, van der Schaft A (eds). Stability and stabilization of nonlinear systems. Springer-Verlag, London, pp 215–237

    Chapter  Google Scholar 

  21. Morin P, Samson C (1999) Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. ESAIM Control, Optim Calc Variations 4:1–35

    Article  MATH  MathSciNet  Google Scholar 

  22. Prieur C (2000). A robustly globally asymptotically stabilizing feedback : the example of the Artstein’s circles. In: Isidori A et al (eds). Nonlinear Control in the year 2000. Springer-Verlag, London vol. 258, pp. 279–300

    Google Scholar 

  23. Prieur C (2000) Uniting local and global controllers with robustness to vanishing noise. Math Control Signals Syst 14:143–172

    Article  MathSciNet  Google Scholar 

  24. Prieur C, Astolfi A (2003) Robust stabilization of chained systems via hybrid control. IEEE Trans Automat Control 48(10):1768–1772

    Article  MathSciNet  Google Scholar 

  25. Prieur C (2005) Asymptotic controllability and robust asymptotic stabilizability. SIAM J Control Optim 43(5):1888–1912

    Article  MATH  MathSciNet  Google Scholar 

  26. Rifford L (2000) Existence of lipschitz and semiconcave control-Lyapunov functions. SIAM J Control Optim 39(4):1043–1064

    Article  MATH  MathSciNet  Google Scholar 

  27. Savkin AV, Evans RJ (2002) Hybrid dynamical systems. Birkhauser, Boston

    MATH  Google Scholar 

  28. Shim H, Teel AR (2003) Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled–data output feedback. Automatica 30(3):441–454

    Article  MathSciNet  Google Scholar 

  29. Sontag ED (1983) A Lyapunov–like characterization of asymptotic controllability. SIAM J Control Optim 34:124–160

    MathSciNet  Google Scholar 

  30. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Automat Control 34:435–443

    Article  MATH  MathSciNet  Google Scholar 

  31. Sontag ED, Sussmann H (1995) Nonsmooth control Lyapunov functions. In: Proceedings of the IEEE conference on decision and control. New Orleans, pp 2799–2805

  32. Sontag ED (1998) Mathematical control theory, 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  33. Sontag ED (1998) Comments on integral variants of ISS. Syst Control Lett 34:93–100

    Article  MATH  MathSciNet  Google Scholar 

  34. Sontag ED (1999) Clocks and insensitivity to small measurement errors. ESAIM Control Optim Calc Variations 4:537–557

    Article  MATH  MathSciNet  Google Scholar 

  35. Sontag ED, Wang Y (1999) Notions of input to output stability. Syst Control Lett 38:235–248

    Article  MATH  MathSciNet  Google Scholar 

  36. Sontag ED, Wang Y (2001) Lyapunov characterizations of input-to-output stability. SIAM J Control Optim 39:226–249

    Article  Google Scholar 

  37. Sordalen OJ, Egeland O (1995) Exponential stabilization of nonholonomic chained systems. IEEE Trans Automat Control 40(1):35–49

    Article  MathSciNet  Google Scholar 

  38. Tsinias J (2004) Propagating asymptotic controllability through integrators. IEEE Trans Automat Control 49:134–141

    Article  MathSciNet  Google Scholar 

  39. Tsinias J (2006) Links between asymptotic controllability and persistence of excitation for a class of time-varying systems. Syst Control Lett (in press)

  40. Tsinias J (2005) A general notion of global asymptotic controllability for time-varying systems and its Lyapunov characterization. Int J Control 78(4):264–276

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karafyllis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karafyllis, I. Stabilization by Means of Time-varying Hybrid Feedback. Math. Control Signals Syst. 18, 236–259 (2006). https://doi.org/10.1007/s00498-006-0001-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-006-0001-5

Keywords

Navigation