Skip to main content
Log in

Structural organization and cytochemical features of the pistil in Olive (Olea europaea L.) cv. Picual at anthesis

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Pistil structure and composition are critical in recognizing and permitting the germination of suitable pollen grains. We have studied the structure of the different component tissues of the pistil, their organization and cytochemical features of olive flowers, Olea europaea L., at anthesis, an essential first step for understanding the processes of pollen-pistil interaction and fertilization. The pistil from olive cv. Picual trees is characterized by a wet bilobed stigma, a solid style and a bilocular ovary containing four ovules. The stigma is composed of external multicellular papillae and a non-papillate inner region of secretory cells. An exudate is observed on the surface of the papillae at anthesis, the moment when the flowers (first) open, but the anthers are not yet dehiscent. The inner secretory cells of the stigma and those of the stylar transmitting tissue are continuous, constituting a funnel-shaped zone which extends from within the stigma to the style base. The outer surface of the ovary and style epidermis is surrounded by a cuticle layer, while internally, the locule wall, formed by the innermost cells of the endocarp, consists of two layers of periclinally oriented cells with thicker cell walls. Starch granules are distributed differentially, concentrated most densely in the style (adjacent to the vascular bundles), in the distil region of the ovary, and in the micropylar ends of the ovules. Well-developed vascular bundles are present in the lower part of the stigma, the style and in the pericarp of the ovary. The histochemical identification of sugars and lipid substances within and around the vascular bundles suggests that they are involved in the transport of these materials. Ultrastructural observations confirm the presence of exudates on the papillar surface and confirm the secretory characteristics of the inner stigmatic cells. They also demonstrate marked differences in size, form, and vacuolar and cytoplasmic contents among the cells of the various style and upper ovary tissues. We provide the first detailed cytological description at anthesis of all the olive pistil tissues, indicating the structural and cytochemical basis for the pistil behavior which will transpire during the progamic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alche JD, Rodriguez-Garcia MI (1988) Ultrastructural and cytochemical observations on intranuclear inclusions in Olea europaea. Inst Phys Conf Ser 93:65–66

    Google Scholar 

  • Alche JD, Rodriguez-Garcia MI (1989) Application of X-ray microanalysis, diffraction and cytochemical techniques in the study of the structure and chemical composition of inclusions in Olea europaea leaves. Inst Phys Conf Ser 98:759–762

    Google Scholar 

  • Alché JD, Fernandez MC, Rodriguez-Garcia MI (1994). Cytochemical features common to nucleoli and cytoplasmic nucleoloids of Olea europaea meiocytes: detection of rRNA by in situ hybridization. J Cell Sci 107:621–629

    PubMed  Google Scholar 

  • Aloni B, Karni L, Zaidman Z, Schaffer AA (1996) Changes of carbohydrates in pepper (Capsicum annuum L.) Flowers in relation to their abscission under different shading regimes. Ann Bot 78:163–168

    Article  CAS  Google Scholar 

  • Altamura Betti MM, Pasqua G, Mazzolani G (1982) Development of the female gametophyte in Olea europaea L. Ann Bot 40:111–117

    Google Scholar 

  • Arbeloa A, Herrero M (1991) Development of the ovular structures in peach [Prunus persica (L.) Batsch]. New Phytol 118:527–534

    Article  Google Scholar 

  • Bartolini S, Guerriero R (1995) Self-compatibility in several clones of olive oil cv. ‘Leccino’. Adv Hortic Sci 9:71–74

    Google Scholar 

  • Bigazzi M (1984) The occurrence of intranuclear inclusions in the Labiatae, Verbenaceae and Scrophulariaceae. Caryologia 37:269–292

    Google Scholar 

  • Bronner R (1975) Simultaneous demonstration of lipids and starch in plant tissues. Stain Technol 50:1–4

    PubMed  CAS  Google Scholar 

  • Brun WA, Betts KJ (1984) Source: sink relations of abscissing and non abscissing soybean flowers. Plant Physiol 75:187–191

    PubMed  Google Scholar 

  • Ciampolini F, Cresti M, Kapil RN (1983). Fine structural and cytochemical characteristics of style and stigma in olive. Caryologia 36:211–230

    CAS  Google Scholar 

  • Cresti M, Ciampolini F, Pacini E, Sarfatti G (1978) Phytoferritin in plastids of the style of Olea europaea L. Acta Bot Neerl 27:417–423

    Google Scholar 

  • Cuevas J (2005) Autoincompatibilidad polen-pistilo, In: Rallo L, Barranco D, Caballero JM, Del Río C, Martín A, Tous J, Trujillo I (eds) Variedades de Olivo en España Junta de Andalucía, MAPA y Ediciones Mundi-Prensa Madrid, Spain, pp 301–308

    Google Scholar 

  • Cuevas J, Polito VS (1997) Compatibility relationships in ‘Manzanillo’ olive. Hortic Sci 32:1056–1058

    Google Scholar 

  • Cuevas J, Díaz-Hermoso AJ, Galián D, Hueso JJ, Pinillos V, Sola D, Polito VS (2001) Response to cross pollination and choice of pollinisers for the olive cultivars (Olea europaea L.) ‘Manzanilla de Sevilla’, ‘Hojiblanca’ and ‘Picual’. Olivae 85:26–32

    Google Scholar 

  • De Graaf BHJ, Derksen JWM, Mariani C (2001) Pollen and pistil in the progamic phase. Sex Plant Reprod 14:41–55

    Article  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Google Scholar 

  • Díaz A, Martín A, Rallo L, Barranco D, De la Rosa R (2006) Self incompatibility of ‘Arbequina’ and ‘Picual’ olives assessed by SSR markers. J Am Soc Hortic Sci 131:250–255

    Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:84–92

    Article  Google Scholar 

  • Feder NT, O’Brien P (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Article  Google Scholar 

  • Felker FC, Robitaille HA, Hess FD (1983) Morphological and ultrastructural development and starch accumulation during chilling of sour cherry flower buds. Am J Bot 70:376–386

    Article  Google Scholar 

  • Fernández-Bolaños P, Frías L (1969) Autofertilidad y austerilidad en el olivo. Agricultura 443:150–151

    Google Scholar 

  • Fernández MC, Rodriguez-Garcia MI (1988) Pollen wall development in Olea europaea L. New Phytol 108:91–99

    Article  Google Scholar 

  • Fernández MC, Rodriguez-Garcia MI (1989) Developmental changes in the aperture during pollen grain ontogeny in Olea europaea L. New Phytol 11:717–723

    Article  Google Scholar 

  • Fernández MC, Rodriguez-Garcia MI (1994) Pollen grain aperture in Olea europaea L. Rev Palaeobot Palynol 85:99–109

    Google Scholar 

  • Fisher BB (1968) Protein staining of ribbonned epon sections for light microscopy. Histochemie 16:92–96

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Wu Y, Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    Article  CAS  Google Scholar 

  • Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signalling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384

    PubMed  CAS  Google Scholar 

  • Ghosh S, Shivanna KR (1984) Structure and cytochemistry of the stigma and pollen–pistil interaction in Zephyranthes. Ann Bot 53:91–106

    Google Scholar 

  • González MV, Coque M, Herrero M (1996) Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae). Am J Bot 83:148–154

    Article  Google Scholar 

  • Herrero M (1992) Mechanisms in the pistil that regulate gametophyte population in peach (Prunus persica). In: Ottaviano E, Mulcahy DL, Sari Gorla M, Bergamini Mulcahy G (eds) Angiosperm pollen and ovule. Springer, New York, pp 377–381

    Google Scholar 

  • Herrero M, Arbeloa A (1989) Influence of the pistil on pollen tube kinetics in peach (Prunus persica). Am J Bot 76:1441–1447

    Article  Google Scholar 

  • Herrero M, Dickinson HG (1979) Pollen-pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. J Cell Sci 36:1–18

    PubMed  CAS  Google Scholar 

  • Herrero M, Hormaza JI (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1985) Surfaces and secretions in the pollen-stigma interaction: a brief review. J Cell Sci Suppl 2:287–300

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Reger BJ (1985) The pollen–stigma interaction in the grasses. Pollen tube guidance and the regulation of tube number in Zea mays L. Acta Bot Neerl 34:193–211

    Google Scholar 

  • Jedrzejuk A, Szlachetka W (2005) Development of flower organs in common lilac (Syringa vulgaris L.) cv. Mme Florent Stepman. Acta Biol Cracov 47:41–52

    Google Scholar 

  • Kadej AJ, Wilms HJ, Willemse MTM (1985) Stigma and stigmatoid tissue of Lycopersicon esculentum. Acta Bot Neerl 34:95–104

    Google Scholar 

  • King JR (1938) Morphological development of the fruit of the olive. Hilgardia 11:437–458

    Google Scholar 

  • Knox RB (1984) Pollen-pistil interactions. In: Linskens HF, Heslop-Harrison J (eds) Encyclopedia of plant physiology, new series, vol. 17. Springer, Berlin, pp 508–608

    Google Scholar 

  • Knox RB, Williams EG, Dumas C (1986) Pollen, pistil, and reproductive function in crop plants. Plant Breeding Rev 4:9–79

    Google Scholar 

  • Lavee S, Taryan J, Levin J, Haskal A (2002) The significance of cross-pollination for various olive cultivars under irrigated intensive growing conditions. Olivae 91:25–36

    Google Scholar 

  • Madey E, Nowack LM, Thompson JE (2001) Isolation and characterization of lipid in phloem sap of canola. Planta 214:625–634

    Article  CAS  Google Scholar 

  • Majewska-Sawka A, Fernández MC, M´rani-Alaoui M, Münster A, Rodríguez-García MI (2002) Cell wall reformation by pollen tube protoplasts of olive (Olea europaea L.): comparison with pollen tube wall. Sex Plant Reprod 15:21–29

    Article  Google Scholar 

  • Marentes E, Grusak MA (1998) Mass determination of low-molecular-weight proteins in phloem sap using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Exp Bot 49:903–911

    Article  CAS  Google Scholar 

  • Martínez-Pallé E, Herrero M (1995) The ponticulus: a structure bridging pollen tube access to the ovule in Pistacia vera. Sex Plant Reprod 8:217–222

    Article  Google Scholar 

  • Martins PC, Cordeiro AM, Rapoport HF (2006) Flower quality in orchards of olive, Olea europaea L., cv. Morisca. Adv Hortic Sci 20:262–266

    Google Scholar 

  • Moorkerjee S, Guerin J, Collins G, Ford C, Sedgley M (2005) Paternity analysis using microsatellite markers to identify pollen donors. Theor Appl Genet 111:1174–1182

    Article  CAS  Google Scholar 

  • Noher de Halac I, Fama G, Cismondi IA (1992) Changes in lipids and polysaccharides during pollen ontogeny in Oenothera anthers. Sex Plant Reprod 5:110–116

    Article  Google Scholar 

  • Pacini E, Juniper BE (1979a) The ultrastructure of pollen-grain development in olive (Olea europaea) 1. Proteins in the pore. New Phytol 83:157–164

    Article  Google Scholar 

  • Pacini E, Juniper BE (1979b) The ultrastructure of pollen-grain development in olive (Olea europaea) 2. Secretion by the tapetal cell. New Phytol 83:165–174

    Article  Google Scholar 

  • Rallo P, Rapoport HF (2001) Early growth and development of the olive fruit mesocarp. J Hortic Sci Biotech 76:408–412

    Google Scholar 

  • Rapoport HF (2004) Botánica y morfología, In: D Barranco R Fernández-Escobar L Rallo (eds) El cultivo del olivo, 5th edn. Junta de Andalucia y Mundi-Prensa, Andalucia, pp 37–62

    Google Scholar 

  • Reale L, Gromo S, Bonofiglio T, Orlandi F, Forniaceri M, Ferranti F, Romano B (2006) Reproductive biology of olive (Olea europaea L.) DOP Umbria cultivars. Sex Plant Reprod 19:151–161

    Article  Google Scholar 

  • Rodrigo J, Hormaza JI, Herrero M (2000) Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiol Plant 108:35–41

    Article  CAS  Google Scholar 

  • Rodríguez-García MI, Fernández MC (1990) Ultrastructural evidence of endoplasmic reticulum differentiation during the maturation of the olive pollen grain. Plant Syst Evol 171:221–231

    Article  Google Scholar 

  • Rodríguez-García MI, Alche JD, Fernández MC (1995) Immunocytochemical localization of allergenic protein (Ole e 1) in the endoplasmic reticulum of the developing olive pollen grain (Olea europaea L.). Planta 196:558–563

    Article  Google Scholar 

  • Rodríguez-García MI, M´rani-Alaoui M, Fernández MC (2003a) Behavior of storage lipids during pollen development and pollen grain germination of olive (Olea europaea L.). Protoplasma 221:237–244

    PubMed  Google Scholar 

  • Rodriguez-García MI, M´rani-Alaoui M, De la Flor Díaz J, Fernández MC (2003b) Observations on microtubules and nuclei motility in the pollen tube of olive (Olea europaea L.) pollen. Acta Biol Cracov 45:97–101

    Google Scholar 

  • Sanzol J, Herrero M (2001) The effective pollination period in fruit trees. Sci Hortic 90:1–17

    Article  Google Scholar 

  • Sedgley M (1979) Structural changes in the pollinated and non-pollinated avocado stigma and style. J Cell Sci 38:49–60

    PubMed  CAS  Google Scholar 

  • Uwate WJ, Lin J (1981) Development of the stigmatic surface of Prunus avium L., sweet cherry. Am J Bot 68:1165–1176

    Article  Google Scholar 

  • Weintraub M, Ragetli HW, Schroeder B (1971). The protein composition of nuclear crystals in leaf cells. Am J Bot 58:182–190

    Article  CAS  Google Scholar 

  • Zinselmeier C, Westgate ME, Schussler JR, Jones RJ (1995) Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol 107:385–391

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Conchita Martínez-Sierra for excellent technical assistance. This work was supported by the Spanish Ministry of Education and Science (MEC), project AGL2003-00719 and a FPI fellowship to C.S. and a FPU fellowship to I.S. The “Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía” also provided financing for this study with project P06-AGR-01791.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rodríguez-García.

Additional information

Communicated by Scott Russell.

I. Serrano and C. Suárez participated equally in this study and should both be considered as principal authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, I., Suárez, C., Olmedilla, A. et al. Structural organization and cytochemical features of the pistil in Olive (Olea europaea L.) cv. Picual at anthesis. Sex Plant Reprod 21, 99–111 (2008). https://doi.org/10.1007/s00497-008-0075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-008-0075-y

Keywords

Navigation