Skip to main content
Log in

The AVAG1 gene is involved in development of reproductive organs in the ornamental asparagus, Asparagus virgatus

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

The AGAMOUS (AG)-like gene has been reported to be involved in the formation of the stamens and carpels. The genus Asparagus contains hermaphrodite and dioecious species, and analysis of the AG-like genes in these species may reveal how these different reproductive systems have evolved in this genus. We isolated one AG-like gene, designated AVAG1, from the ornamental hermaphrodite species Asparagus virgatus. Phylogenetic analysis showed that the AVAG1 gene is closely related to HAG1 from Hyacinthus and PeMADS1 from Phalaenopsis. Northern blot analysis showed that AVAG1 transcripts were detected in flower buds, but not in roots, stems or phylloclades. In situ hybridization analyses revealed that the AVAG1 mRNA is expressed specifically in the floral meristem and the developing reproductive organs. Early in flower development, expression of AVAG1 was restricted mainly to the stamens and carpels, with AVAG1 expression in the stamen disappearing at later stages of flower development, although it remained strong in the ovule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A–F

Similar content being viewed by others

References

  • Ainsworth C, Crossley S, Buchanan-Wollaston V, Thangavelu M, Parker J (1995) Male and female of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell 7:1583–1598

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    CAS  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum majus. Cell 72:85–95

    CAS  PubMed  Google Scholar 

  • Caporali E, Spada A, Losa A, Marziani G (2000) The MADS box gene AOM1 is expressed in reproductive meristems and flowers of the dioecious species Asparagus officinalis. Sex Plant Reprod 13:151–156

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    CAS  PubMed  Google Scholar 

  • Demura T, Fukuda H (1996) In situ hybridization to cellular RNA using 35S-labeled cRNA probes. Plant Tissue Cult Lett 13:343–349

    Google Scholar 

  • Franken AA (1970) Sex characteristic and inheritance of sex in Asparagus (Asparagus officinalis L.). Euphytica 19:277–287

    Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    PubMed  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    CAS  PubMed  Google Scholar 

  • Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76:131–143

    CAS  PubMed  Google Scholar 

  • Hardenack S, Ye De, Saedler H, Grant S (1994) Comparison of MADS box gene expression in developing male and female of the dioecious plant white campion. Plant Cell 6:1775–1787

    CAS  PubMed  Google Scholar 

  • Honda H, Hirai A (1990) A simple and efficient method for identification of hybrids using nonradioactive rDNA as probe. Jpn J Breed 40:339–348

    Google Scholar 

  • Huijser PW, Klein J, Lönnig W-E, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene SQUAMOSA in Antirrhinum majus. EMBO J:1239–1249

    Google Scholar 

  • Jack T, Brochman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    CAS  PubMed  Google Scholar 

  • Kang H-G, Jeon J-S, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 36:1021–1029

    Article  Google Scholar 

  • Kater MM, Colombo L, Franken J, Busscher M, Masiero S, Van Lookeren CMM, Angenent GC (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182

    CAS  PubMed  Google Scholar 

  • Kempin SA, Mandel MA, Yanofsky MF (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol 103:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Lee HS, Lee SH, Yoo OJ, Liu JR (1998) A MADS box gene homologous to AG is expressed in seedlings as well as in flowers of ginseng. Plant Cell Physiol 39:836–845

    CAS  PubMed  Google Scholar 

  • Kyozuka J, Shimamoto K (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol 43:130–135

    CAS  PubMed  Google Scholar 

  • Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A,B and C genes. Plant Cell Physiol 41:710–718

    CAS  PubMed  Google Scholar 

  • Lee YO, Kanno A, Kameya T (1997) Phylogenetic relationships in the genus Asparagus based on the restriction enzyme analysis of the chloroplast DNA. Breed Sci 47:375–378

    Article  CAS  Google Scholar 

  • Li QZ, Li XG, Bai SN, Lu WL, Zang XS (2002) Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta 215:533–540

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Dee ZP, Wittich P, Pe E, Rigola D, Del Buono I, Sari-Gorla M, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25:237–244

    CAS  PubMed  Google Scholar 

  • Losa A, Caporali E, Spada A, Martinelli S, Marziani G (2004) AOM3 and AOM4: two MADS box genes expressed in reproductive structures of Asparagus officinalis. Sex Plant Reprod 16:215-221

    Article  CAS  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    CAS  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Isono E, Kejnovsky E, Vyskot B, Dolezel J, Kawano S, Charlesworth D (2003) Duplicative transfer of a MADS box gene to a plant Y chromosome Mol Biol Evol 207:1062–1069

    Google Scholar 

  • Meguro A, Takumi S, Ogihara Y, Murai K (2003) WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod 15:221–230

    CAS  Google Scholar 

  • Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C-function activity in maize flower development. Science 274:1537–1540

    CAS  PubMed  Google Scholar 

  • Meyerowitz EM, Bowman JL, Brockman LL, Drews GN, Jack T, Sieburth LE, Weigel D (1991) A genetic and molecular model for flower development in Arabidopsis thaliana. Development 113:157–167

    Google Scholar 

  • Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131

    CAS  PubMed  Google Scholar 

  • Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theissen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA 94:2415–2420

    PubMed  Google Scholar 

  • Park J-H, Ishikawa Y, Yoshida R, Kanno A, Kameya T (2003) Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol Biol 51:867–875

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Ishikawa Y, Ochiai T, Kanno A, Kameya T (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol (in press)

  • Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochemie 78:364–369

    Article  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky M (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky M (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    CAS  PubMed  Google Scholar 

  • Rigola D, Pe ME, Fabrizio C, Me G, Sari-Gorla M (1998) CaMADS1, a MADS box gene expressed in the carpel of hazelnut. Plant Mol Biol 38:1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RJ, Veit B, Mandel MA, Mena M, Hake S, Yanofsky MF (1993) Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5:729–737

    CAS  PubMed  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    CAS  PubMed  Google Scholar 

  • Sommer H, Beitran J-P, Huijser PW, Pape H, Lönnig W-E, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus. EMBO J 9:605–613

    CAS  PubMed  Google Scholar 

  • Theissen G, Strater T, Fischer A, Saedler H (1995) Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene 156:155–166

    CAS  PubMed  Google Scholar 

  • Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    CAS  PubMed  Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig W-E, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704

    PubMed  Google Scholar 

  • Tzeng T-Y, Chen H-Y, Yang C-H (2002) Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drew G, Feldmann K, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346:35–39

    CAS  PubMed  Google Scholar 

  • Yu D, Kotilainen M, Pöllänen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor H. Takahashi and Dr. M. Kamada (Tohoku University, Sendai, Japan) for their help and discussions regarding the in situ experiments. We also thank Dr. T. Ochiai (Tohoku University) for helpful discussions and Mr. H. Tokairin for his collaboration in culturing the plants. We are also grateful to Dr. T. Yamaguchi (Fukukaen Nursery & Bulb Co., Mie, Japan), Dr. K. Sudo (National Institute of Floricultural Science, Tsukuba, Japan) and Dr. T. Sonoda (Fukushima Agricultural Experiment Station, Koriyama, Japan) for providing seeds and/or plants of A. virgatus. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kanno.

Additional information

The nucleotide sequence data of the cDNA reported in this paper has been deposited with the EMBL, GenBank and DDBJ nucleotide sequence databases under the accession number AB125347 (AVAG1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, PY., Ito, T., Kim, SY. et al. The AVAG1 gene is involved in development of reproductive organs in the ornamental asparagus, Asparagus virgatus . Sex Plant Reprod 17, 1–8 (2004). https://doi.org/10.1007/s00497-004-0212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-004-0212-1

Keywords

Navigation