Skip to main content
Log in

Immunocytochemical localization of Cry j 1, the major allergen of Cryptomeria japonica (Taxodiaceae) in Cupressus arizonica and Cupressus sempervirens (Cupressaceae) pollen grains

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Immunocytochemical localization of cross-reactive antigens to Cry j 1, the major allergen of Cryptomeria japonica, in the pollen grains of Cupressus arizonica and Cupressus sempervirens, was conducted using transmission electron microscopy. Mature and activated pollen grains were fixed for immunocytochemistry using conventional and freezing protocols. Sections containing the samples were incubated with anti-Cry j 1 monoclonal antibody (mAb) (KW-S91). Cross-reactive antigens to Cry j 1 were detected in the mature pollen grains of Cupressus arizonica and Cupressus sempervirens, and abundant gold particles were seen in the orbicules and wall, and in the Golgi, nucleus, and inclusions in reserve materials. After 5 min of activation, labelling noticeably decreased. From 15 min to 48 h, the cytoplasm exhibits a new labelling pattern, with gold markers being associated with protein storage vacuoles. The decrease in cross-reactive antigens during the first 5 min of activation could be due to a rapid release of proteins recognized by Cry j 1 mAb during pollen attachment in the pollination droplet. Our results show that the content of allergenic proteins is unstable, displaying variation relative to the progress of germination in Cupressus sempervirens and Cupressus arizonica pollen grains. The ability to do so may be viewed as an adaptive strategy of Cupressaceae pollen grains to maximize their biosynthetic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f.
Fig. 2a–f.
Fig. 3a–e.

Similar content being viewed by others

References

  • Aalberse RC, Koshte V, Clemens JG (1981) Immunoglobulin E antibodies that cross react with vegetable foods, pollen, and Hymenoptera venom. J Allergy Clin Immunol 68:356–364

    CAS  PubMed  Google Scholar 

  • Aalberse RC, Akkerdaas JH, van Ree R (2001) Cross-reactivity of IgE antibodies to allergens. Allergy 56:478–490

    Article  CAS  PubMed  Google Scholar 

  • Aceituno E, Del Pozo V, Minués A, Arrieta I, Cortesano B, Cardaba B, Gallardo S, Rojo M, Palomino P, Lahoz C (2000) Molecular cloning of major allergen from Cupressus arizonica pollen: Cup a 1. Clin Exp Allergy 30:1750–1758

    Article  CAS  PubMed  Google Scholar 

  • Barletta B, Afferini C, Tinghino R, Mari A, Di Felice G, Pini C (1996) Cross-reactivity between Cupressus arizonica and Cupressus sempervirens. J Allergy Clin Immunol 98:797–804

    CAS  PubMed  Google Scholar 

  • Castells T, Arcalis E, Moreno-Grau S, Bayo J, Elvira-Rendueles B, Belchi J, Seoane-Camba JA, Suárez-Cervera M (2002) Immunocytochemical localization of allergenic proteins from mature to activated Zygophyllum fabago L. (Zygophyllaceae) pollen grains. Eur J Cell Biol 81:107–115

    PubMed  Google Scholar 

  • Chrispeels MJ (1991) Sorting of proteins in the secretory system. Annu Rev Plant Physiol Plant Mol Biol 42:21–53

    Article  CAS  Google Scholar 

  • D'Amato G, Spieksma FTM, Liccardi G, Jäger S, Russo M, Kontou-Fili K, Nikkels H, Wüthrich B, Bonini S (1998) Pollen-related allergy in Europe. Allergy 53:567–578

    CAS  PubMed  Google Scholar 

  • Duhoux E (1972) Formation de la paroi du tube pollinique au cours de la germination du pollen chez le Juniperus communis L., cultivé in vitro. C R Acad Sci Paris 274:3238–3241

    Google Scholar 

  • Fernando DD, Owens JN, Yu X, Ekramoddoullah AKM (2001) RNA and protein synthesis during in vitro pollen germination and tube elongation in Pinus monticola and other conifers. Sex Plant Reprod 13:259–264

    Article  CAS  Google Scholar 

  • Galili G, Sengupta-Gopalan Ch, Ceriotti A (1998) The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol Biol 38:1–29

    Article  CAS  PubMed  Google Scholar 

  • Gelbart G, von Aderkas P (2002) Ovular secretions as part of pollination mechanisms in conifers. Ann For Sci 59:345–357

    Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    CAS  PubMed  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1991) Structural and functional variation in pollen intines. In: Blackmore S, Barners SH (eds) Pollen and spores: patterns of diversification. Clarendon Press, Oxford, pp 331–343

    Google Scholar 

  • Iacovacci P, Afferni C, Barletta B, Tinghino R, Di Felice G, Pini C, Mari A (1998) Juniperus oxicedrus: a new allergenic pollen from the Cupressaceae family. J Allergy Clin Immunol 101:755–761

    CAS  PubMed  Google Scholar 

  • Iacovacci P, Pini C, Afferni C, Barletta B, Tinghino R, Schinina E, Federico R, Mari A, Di Felice G (2001) A monoclonal antibody specific for a carbohydrate epitope recognizes an IgE-binding determinant shared by taxonomically unrelated allergenic pollens. Clin Exp Allergy 31:458–465

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki T, Koizumi K, Ikemori R, Ismiyama Y, Kushibiki E (1987) Studies of prevalence of Japanese cedar pollinosis among the residents in a densely cultivated area. Ann Allergy 58:265–270

    PubMed  Google Scholar 

  • Kingetsu I, Ohno N, Hayashi N, Sakaguchi M, Inouyes S, Saito S (2000) Common antigenicity between Japanese cedar (Cryptomeria japonica) pollen and Japanese cypress (Chamaecyparis obtusa) pollen, I. H-2 complex affects cross responsiveness to Cry j 1 and Cha o 1 at the T- and B-cell level in mice. Immunology 99:625–629

    Article  CAS  PubMed  Google Scholar 

  • Kurmann MH (1994) Pollen morphology and ultrastructure in the Cupressaceae. Acta Bot Gallica 141:141–147

    Google Scholar 

  • Miki-Hirosige H, Nakamura S, Yasueda H, Shida T, Takahashi Y (1994) Immunocytochemical localization of the allergenic proteins in the pollen of Cryptomeria japonica. Sex Plant Reprod 7:95–100

    Google Scholar 

  • Nakamura Y, Takagi S, Suzuki M, Ito H, Murakami S, Ohta N (2001) Survival of memory T cells specific for Japanese cypress pollen allergen is maintained by cross-stimulation of putative pectate lyases from other plants. Allergy 56:385–392

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus JM, Rogers JC (1998) Sorting of proteins to vacuoles in plant cell. Plant Mol Biol 38:127–144

    CAS  PubMed  Google Scholar 

  • Nishihata S, Inouye S, Saiga N, Sukuzi S, Murayama K, Yokoyama T, Saito Y (1999) Prevalence rate of allergy to Japanese cedar pollen in Tokyo—from field investigation in 1996 by Tokyo Japanese Cedar Pollen Allergy Measurements and Review Committee. Arerugi 48:597–604

    CAS  PubMed  Google Scholar 

  • Okano M, Kino K, Takishita T, Hattori H, Ogawa T, Yoshino T, Yokoyama M, Nishizaki K (2001) Roles of carbohydrates on Cry j 1, the major allergen of Japanese cedar pollen, in specific T-cell responses. J Allergy Clin Immunol 108:101–108

    Article  CAS  PubMed  Google Scholar 

  • Owens JN, Molder M (1980) Sexual reproduction in western red cedar (Thuja plicata). Can J Bot 58:1376–1393

    Google Scholar 

  • Owens JN, Takaso T, Runions CJ (1998) Pollination in conifers. Trends Plant Sci 3:479–485

    Article  Google Scholar 

  • Panzani R, Centanni G, Brunel M (1986) Increase of respiratory allergy to the pollens of cypresses in the South of France. Ann Allergy 56:460–463

    CAS  PubMed  Google Scholar 

  • Pennell RI, Bell PR (1986) The development of the male gametophyte and spermatogenesis in Taxus baccata L. Proc R Soc London B 228:85–96

    Google Scholar 

  • Pichot C, El Maâtaoui M (2000) Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theor Appl Genet 101:574–579

    Article  Google Scholar 

  • Ramirez D (1984) The natural history of mountain cedar pollinosis. J Allergy Clin Immunol 73:88–93

    CAS  PubMed  Google Scholar 

  • Runions CJ, Owens JN (1998) Evidence of pre-zygotic self-incompatibility in a conifer. In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp 255–264

  • Schwietz LA, Goetz DW, Whisman BA, Reid MJ (2000) Cross-reactivity among conifer pollens. Ann Allergy Asthma Immunol 84:87–93

    CAS  PubMed  Google Scholar 

  • Sparvoli F, Faoro F, Damiati MG, Ceriotti A, Bollini R (2000) Misfolding and aggregation of vacuolar glycoproteins in plant cells. Plant J 24:825–836

    Article  CAS  PubMed  Google Scholar 

  • Staehelin LA, Moore I (1995) The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu Rev Plant Physiol Plant Mol Biol 46:162–288

    Article  Google Scholar 

  • Suárez-Cervera M, Le Thomas A, Goldblatt P, Marquez J, Seoane-Camba J (2001) The channelled intine of Aristea major: ultrastructural modifications during development, activation and germination. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, pp 57–71

    Google Scholar 

  • Suárez-Cervera M, Arcalis E, Le Thomas A, Seoane Camba J (2002) Pectin distribution pattern in the apertural intine of Euphorbia peplus L. (Euphorbiaceae) pollen. Sex Plant Reprod 14:291–298

    Article  Google Scholar 

  • Takahashi Y, Mizoguchi J, Katagiri S, Sakaguchi M, Inouye S, Ishikawa M, Tonosaki A, Iwao F (1989) Development and distribution of the major pollen allergen (Cry j 1) in male flower buds of Japanese cedar (Cryptomeria japonica). Arerugi 38:1354–1358

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Nagoya T, Watanabe M, Inouye S, Sakaguchi M, Katagiri A (1993) A new method of counting airborne Japanese cedar (Cryptomeria japonica) pollen allergens by immunoblotting. Allergy 48:94–98

    CAS  Google Scholar 

  • Takahashi Y, Sasaki K, Nakamyra S, Miki-Hirosige H, Nitta H (1995) Aerodynamic size distribution of particles emitted from the flowers of allergologically important plants. Grana 34:45–49

    Google Scholar 

  • Takaso T (1990) Pollination drop time at the Arnold Arboretum. Arnoldia 50:2–7

    Google Scholar 

  • Taniai M, Kayano T, Takakura R, Yamamoto S, Usui M, Ando S, Kurimoto M, Panzani R, Matuhasi T (1993) Epitopes on Cry j I and Cry j II for the human IgE antibodies cross-reactive between Cupressus sempervirens and Cryptomeria japonica pollen. Mol Immunol 30:183–189

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi Y, Ono A, Sawatani M, Nanba M, Kohno K, Usui M, Kurimoto M, Matuhasi T (1995) Cry j 1, a major allergen of Japanese cedar pollen, has pectate lyase enzyme activity. Allergy 50:90–93

    CAS  PubMed  Google Scholar 

  • Thomas WR (2002) How good are carbohydrates as allergens? Clin Exp Allergy 32:658–661

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson PB, Takaso T (1998) Hydrodynamics of pollen capture in conifers. In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp 265–275

  • Uehara K, Sahashi N (2000) Pollen wall development in Cryptomeria japonica (Taxodiaceae). Grana 39:267–274

    Article  Google Scholar 

  • Walden DB (1993) In vitro pollen germination. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York Berlin Heidelberg, pp 723–724

  • Wing RA, Yamaguchi J, Larabell SK, Ursin VM, McCormick S (1986) Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol Biol 14:17–28

    Google Scholar 

  • Yasueda H, Yui Y, Shimizu T, Shida T (1983) Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica) pollen. J Allergy Clin Immunol 71:77–86

    CAS  PubMed  Google Scholar 

  • Yatomi R, Nakamura S, Nakamura N (2002) Immunocytochemical and cytochemical detection of wall components of germinated pollen of gymnosperms. Grana 41:21–28

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. T. Nagoya of Kowa Research Institute, Kowa Co., Ltd., Tsukuba, Japan for kindly supplying anti-Cry j 1 mAb (KW-S91) and are grateful to the Scientific Technical Services at the University of Barcelona for their careful preparation of the sections for TEM. This study was supported by Grant BOS2000-0563-C02, Ministry of Science and Technology, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Suárez-Cervera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez-Cervera, M., Takahashi, Y., Vega-Maray, A. et al. Immunocytochemical localization of Cry j 1, the major allergen of Cryptomeria japonica (Taxodiaceae) in Cupressus arizonica and Cupressus sempervirens (Cupressaceae) pollen grains. Sex Plant Reprod 16, 9–15 (2003). https://doi.org/10.1007/s00497-003-0164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-003-0164-x

Keywords

Navigation