Skip to main content
Log in

Heat stress and poultry production: impact and amelioration

  • Review Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Globally, the poultry industry is gaining significant importance among the agricultural and its allied sectors. However, heat stress was found to negatively affect the poultry production particularly in the tropical regions. This review is therefore an attempt to generate information pertaining to the impacts of heat stress on poultry production and its amelioration. Heat stress reduces the growth, reproductive performance, and egg production in poultry birds. The reduction in productive potential of poultry birds on exposure to heat stress may be attributed to the deviation of energy resources from production to adaptation pathway. There are different approaches pertaining to relieving the adverse impacts of heat stress on poultry production. These approaches can be broadly categorized under genetic, management, and nutritional strategies. These approaches may reduce the negative effects of heat stress and enhance the productive performance of poultry birds. The management strategies include appropriate shelter design, providing shade, using sprinklers, implementing cooling devices, and using fans and ventilation systems. The recommended floor space for mature birds weighing 1.7 kg is 0.06 m2/bird while it is 0.13 m2/bird for the birds weighing 3.5 kg with 27.8 kg/m2 bird density in either case. The nutritional interventions comprise ration balancing and providing essential micronutrients to improve the productive and reproductive performance in poultry birds. Fat, antioxidants, yeast, and electrolyte supplementations are some of the most commonly used nutritional strategies to ensure optimum production in the poultry industry. Furthermore, providing adequate water supply and disease surveillance measures may help to ensure optimum meat and egg production in the birds. The advanced biotechnological tools may aid to identify suitable genetic markers in poultry birds which might help in developing new strains of higher thermo-tolerance by designing suitable breeding program involving marker-assisted selection. These strategies may help to optimize and sustain poultry production in the changing climate scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Dieyeh Z (2006) Effect of chronic heat stress and long-term feed restriction on broiler performance. Int J Poult Sci 5(2):185–190. https://doi.org/10.3923/ijps.2006.185.190

    Article  Google Scholar 

  • Ahmad T, Sarwar M (2006) Dietary electrolyte balance: implications in heat stressed broilers. World's Poultry Sci J 62(4):638–653. https://doi.org/10.1017/S0043933906001188

    Article  Google Scholar 

  • Akbarian A, Michiels J, Degroote J, Majdeddin M, Golian A, De Smet S (2016) Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J Anim Sci Biotechnol 7(1):37. https://doi.org/10.1186/s40104-016-0097-5

    Article  CAS  Google Scholar 

  • Aksit M, Yalcin S, Ozkan S, Metin K, Ozdemir D (2006) Effects of temperature during rearing and crating on stress parameters and meat quality of broilers. Poult Sci 85(11):1867–1874

    CAS  Google Scholar 

  • Altan Ö, Altan A, Çabuk M, Bayraktar H (2000) Effects of heat stress on some blood parameters in broilers. Turk J Vet Anim Sci 24(2):145–148

    Google Scholar 

  • Altan O, Pabuçcuoğlu A, Altan A, Konyalioğlu S, Bayraktar H (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci 44(4):545–550

    CAS  Google Scholar 

  • Amerah AM, Ravindran V, Lentle RG, Thomas DG (2007) Feed particle size: Implications on the digestion and performance of poultry. World's Poultry Sci J 63(3):439–455. https://doi.org/10.1017/S0043933907001560

    Article  Google Scholar 

  • Arad Z, Arnason SS, Chadwick A, Skadhauge E (1985) Osmotic and hormonal responses to heat and dehydration in the fowl. J Comp Physiol B 155(2):227–234. https://doi.org/10.1007/BF00685217

    Article  CAS  Google Scholar 

  • Assenmacher I (1973) The peripheral endocrine glands in. In: Farmer DS, King JR (eds) Avian Biology. Academic Press, New York, pp 183–286

    Google Scholar 

  • Ayo J, Obidi J, Rekwot P (2011) Effects of heat stress on the well-being, fertility, and hatchability of chickens in the Northern Guinea Savannah zone of Nigeria: a review. ISRN Vet Sci 2011, Article ID 838606:1–10. https://doi.org/10.5402/2011/838606

    Article  Google Scholar 

  • Berrong SL, Washburn KW (1998) Effects of genetic variation on total plasma protein, body weight gains, and body temperature responses to heat stress. Poult Sci 77(3):379–385. https://doi.org/10.1093/ps/77.3.379

    Article  CAS  Google Scholar 

  • Beuving G, Vonder GMA (1978) Effect of stressing factors on corticosterone levels in the plasma of laying hens. Gen Comp Endocrinol 35(2):153–159. https://doi.org/10.1016/0016-6480(78)90157-0

    Article  CAS  Google Scholar 

  • Bhadauria P, Keshava P, Mamgai A, Murai, Jadoun Y (2016) Management of heat stress in poultry production system, ICARAgricultural Technology Application Research Institute, Zone-1, Ludhiana141 004 (INDIA)

  • Borges SA, Fischer da Silva AV, Majorka A, Hooge DM, Cummings KR (2004) Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult Sci 83(9):1551–1558. https://doi.org/10.1093/ps/83.9.1551

    Article  CAS  Google Scholar 

  • Bowen SJ, Washburn KW (1985) Thyroid and adrenal response to heat stress in chickens and quail differing in heat tolerance. Poult Sci 64(1):149–154. https://doi.org/10.3382/ps.0640149

    Article  CAS  Google Scholar 

  • Buijs S, Tuyttens F, Baert J, Vangeyte J, Van Poucke E, Keeling L (2008) Evaluation of space requirements of broiler chickens by analysis of their spatial distribution. Proceedings of Measuring Behavior 2008 (Maastricht, The Netherlands, August 26-29, 2008) Eds. A.J. Spink, M.R. Ballintijn, N.D. Bogers, F. Grieco, L.W.S. Loijens, L.P.J.J. Noldus, G. Smit, and P.H. Zimmerman, pp 316–317

  • Burmeister P (1986) A model theoretic oriented approach to partial algebras. Akademie-Verlag, Berlin

    Google Scholar 

  • Butcher GD, Miles R (2012) Heat stress management in broilers, VM65 series of the Veterinary Medicine-Large Animal Clinical Sciences Department, Florid Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida

  • Cahaner A, Leenstra F (1992) Effects of high temperature on growth and efficiency of male and female broilers from lines selected for high weight gain, favorable feed conversion, and high or low fat content. Poult Sci 71(8):1237–1250. https://doi.org/10.3382/ps.0711237

    Article  CAS  Google Scholar 

  • Calder WA Jr, Schmidt-Nielsen K (1966) Evaporative cooling and respiratory alkalosis in the pigeon. Proc Natl Acad Sci U S A 55(4):750–756. https://doi.org/10.1073/pnas.55.4.750

    Article  CAS  Google Scholar 

  • Calefi AS, Honda BTB, Costola-de-Souza C, de Siqueira A, Namazu LB, Quinteiro-Filho WM, Fonseca JGDS, Aloia TPA, Piantino-Ferreira AJ, Palermo-Neto J (2014) Effects of long-term heat stress in an experimental model of avian necrotic enteritis. Poult Sci 93(6):1344–1353. https://doi.org/10.3382/ps.2013-03829

    Article  CAS  Google Scholar 

  • Chand N, Muhammad S, Khan RU, Alhidary IA, Rehman ZU (2016) Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. Environ Sci Pollut Res 23:23930–23935

    CAS  Google Scholar 

  • Charles DR (2002) Responses to the thermal environment. In: Charles DA, Walker AW (eds) Poultry environment problems, a guide to solutions. Nottingham University Press, Nottingham, pp 1–16

    Google Scholar 

  • Chen Z-Y, Gan J-K, Xiao X, Jiang L-Y, Zhang X-Q, Luo Q-B (2013) The association of SNPs in Hsp90β gene 5′ flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds. Mol Biol Rep 40(9):5295–5306. https://doi.org/10.1007/s11033-013-2630-3

    Article  CAS  Google Scholar 

  • Chowdhury VS, Tomonaga S, Nishimura S, Tabata S, Furuse M (2012) Physiological and behavioral responses of young chicks to high ambient temperature. J Poultry Sci Advpub 49:1203260160–1203260218. https://doi.org/10.2141/jpsa.011071

    Article  Google Scholar 

  • Collin A, Picard M, Yahav S (2005) The effect of duration of thermal manipulation during broiler chick embryogenesis on body weight and body temperature of post-hatched chicks. Anim Res 54(2):105–111. https://doi.org/10.1051/animres:2005004

    Article  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    CAS  Google Scholar 

  • Daghir NJ (2008a) Broiler feeding and management in hot climates. In: Daghir N (ed) Poultry production in hot climate. CAB International, Cromwell Press, Trowbridge, pp 227–260

    Google Scholar 

  • Daghir NJ (2008b) Nutrient requirements of poultry at high temperature. In: Daghir N (ed) Poultry production in hot climate No. 133. CAB International, Cromwell Press, Trowbridge, pp 133–160

    Google Scholar 

  • Daghir NJ (2008c) Present status and future of poultry industry in hot regions. In: Daghir NJ (ed) Poultry Production in Hot Climates, 2nd edn. CAB International, Wallingford, pp 1–12

    Google Scholar 

  • Daghir NJ (2009) Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann Inf 44(1):6–15

    Google Scholar 

  • Das R, Naha BC, Sailo L (2014) Effect of heat stress on poultry production and different strategies for its amelioration. Poultry Technol 9:38–40

    Google Scholar 

  • de Queiroz JPAF, de Souza JBF, de Lima HFF, de Oliveira Costa MK, de Macedo Costa LL, de Arruda AMV (2014) Daily variations in the thermoregulatory behaviors of nakedneck broilers in an equatorial semi-arid environment. Int J Biometeorol 58:1259–1264

    Google Scholar 

  • Deeb N, Yunis R, Cahaner A (1993) Genetic manipulation of feather coverage and its contribution to heat tolerance of commercial broilers. In: Proceedings of the 10th International Symposium on Current Problems in Avian Genetics, Nitra, Slovakia. p 36

  • Demeke S (2004) Egg production performance of local and White Leghorn hens under intensive and rural household conditions in Ethiopia. Livest Res Rural Dev 16(2):2004

    Google Scholar 

  • Deyhim F, Teeter RG (1991) Research note: sodium and potassium chloride drinking water supplementation effects on acid-base balance and plasma corticosterone in broilers reared in thermoneutral and heat-distressed environments. Poult Sci 70(12):2551–2553. https://doi.org/10.3382/ps.0702551

    Article  CAS  Google Scholar 

  • Ebeid TA, Suzuki T, Sugiyama T (2012) High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult Sci 91(9):2282–2287. https://doi.org/10.3382/ps.2011-01898

    Article  CAS  Google Scholar 

  • Edens FW (1983) Effect of environmental stressors on male reproduction. Poult Sci 62(8):1676–1689. https://doi.org/10.3382/ps.0621676

    Article  CAS  Google Scholar 

  • El Hadi H, Sykes AH (1982) Thermal panting and respiratory alkalosis in the laying hen. Br Poult Sci 23(1):49–57. https://doi.org/10.1080/00071688208447928

    Article  Google Scholar 

  • Elnagar SA, Scheideler SE, Beck MM (2010) Reproductive hormones, hepatic deiodinase messenger ribonucleic acid, and vasoactive intestinal polypeptide-immunoreactive cells in hypothalamus in the heat stress-induced or chemically induced hypothyroid laying hen. Poult Sci 89(9):2001–2009. https://doi.org/10.3382/ps.2010-00728

    Article  CAS  Google Scholar 

  • Ensminger ME, Oldfield JE, Heinemann WW (1990) Feeds and nutrition. The Ensminger Publishing Company, Clovis

    Google Scholar 

  • Etches R, John T, Gibbins AV (2008) Behavioural, physiological, neuroendocrine and molecular responses to heat stress. In: Daghir N (ed) Poultry production in hot climates. CAB International, Cromwell Press, Trowbridge, pp 31–66

    Google Scholar 

  • Fahey AG, Cheng HW (2008) Effects of Social Disruption on Physical parameters, corticosterone concentrations, and immune system in two genetic lines of White Leghorn layers. Poult Sci 87(10):1947–1954

    CAS  Google Scholar 

  • FAO (2013) IFAD and WFP. The State of Food Insecurity in the World. The multiple dimensions of food security. World Food and Agriculture, FAO, Rome

    Google Scholar 

  • Felver-Gant JN, Mack LA, Dennis RL, Eicher SD, Cheng HW (2012) Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poult Sci 91(7):1542–1551. https://doi.org/10.3382/ps.2011-01988

    Article  CAS  Google Scholar 

  • Ferket PR, Gernat AG (2006) Factors that affect feed intake of meat birds: a review. Int J Poult Sci 5(10):905–911

    Google Scholar 

  • Gabal MSMA (2015) Effect of feed restriction on broiler performance under heat stress. PhD thesis submitted to Department of Animal Production, Faculty of Agriculture, CairoAl-Azhar University, Egypt

  • Gbedemah S, Torgbor F, Kufogbe S (2018) Adaptation strategies of poultry farmers to rising temperature in the Greater Accra region of Ghana. West Afr J App Ecol 26:41–55

    Google Scholar 

  • Gelli A, Becquey E, Ganaba R, Headey D, Hidrobo M, Huybregts L, Verhoef H, Kenfack R, Zongouri S, Guedenet H (2017) Improving diets and nutrition through an integrated poultry value chain and nutrition intervention (SELEVER) in Burkina Faso: study protocol for a randomized trial. Trials 18(1):412. https://doi.org/10.1186/s13063-017-2156-4

    Article  Google Scholar 

  • Gerken M, Afnan R, Dorl J (2006) Adaptive behaviour in chickens in relation to thermoregulation. Archiv Fur Geflugelkunde 70(5):199

    Google Scholar 

  • Ghazi S, Habibian M, Moeini MM, Abdolmohammadi AR (2012) Effects of different levels of organic and inorganic chromium on growth performance and immunocompetence of broilers under heat stress. Biol Trace Elem Res 146(3):309–317. https://doi.org/10.1007/s12011-011-9260-1

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food Security: The Challenge of Feeding 9 Billion People. Science 327(5967):812–818. https://doi.org/10.1126/science.1185383

    Article  CAS  Google Scholar 

  • Goncalves SA, Ferreira RA, Pereira IG, Oliveira CC, Amaral PIS, Garbossa CAP, Fonseca LS (2017) Behavioral and physiological responses of different genetic lines of free-range broiler raised on a semi-intensive system. J Anim Behav Biometeorol 5:112–117

    Google Scholar 

  • Gouda A, El-Moniary MM, Youssef AW, Hamouda Y, Hassan HM, El-Daly EF (2018) Response of broiler chicks to diets supplemented with MoringaOleifera dry leaves and some antioxidants under tropical summer conditions. Biosci Res 15(2):637–644

    Google Scholar 

  • Gous RM, Morris TR (2005) Nutritional interventions in alleviating the effects of high temperatures in broiler production. World’s Poultry Sci J 61(3):463–475. https://doi.org/10.1079/WPS200568

    Article  Google Scholar 

  • Gowe R, Fairfull R (2008) Breeding for resistance to heat stress. In: Daghir N (ed) Poultry production in hot climates No. 13. CAB International, Cromwell Press, Trowbridge, pp 11–30

    Google Scholar 

  • Gross WB (1992) Effect of short-term exposure of chickens to corticosterone on resistance to challenge exposure with Escherichia coli and antibody response to sheep erythrocytes. Am J Vet Res 53(3):291–293

    CAS  Google Scholar 

  • Gross WB, Siegel HS (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis 27(4):972–979. https://doi.org/10.2307/1590198

    Article  CAS  Google Scholar 

  • Hester PY, Muir WM, Craig JV, Albright JL (1996) Group selection for adaptation to multiple-hen cages: production traits during heat and cold exposures. poultry. Science 75(11):1308–1314. https://doi.org/10.3382/ps.0751308

    Article  CAS  Google Scholar 

  • Hoffmann I (2010) Climate change and the characterization, breeding and conservation of animal genetic resources. Anim Genet 41(s1):32–46. https://doi.org/10.1111/j.1365-2052.2010.02043.x

    Article  Google Scholar 

  • Holik V (2015) Management of laying hens under tropical conditions begins during the rearing period. Lohmann Inf 50(2):16–23

    Google Scholar 

  • Horst P (1988) Native fowl as reservoir for genomes and major genes with direct and indirect effects on productive adaptability. In: Proceedings of the 18th World’s Poultry Congress, Nagoya, Japan. p 99–105

  • Hristov AN, Degaetano AT, Rotz CA, Hoberg E, Skinner RH, Felix T, Li H, Patterson PH, Roth G, Hall M, Ott TL, Baumgard LH, Staniar W, Hulet RM, Dell CJ, Brito AF, Hollinger DY (2018) Climate change effects on livestock in the Northeast US and strategies for adaptation. Clim Chang 146(1):33–45. https://doi.org/10.1007/s10584-017-2023-z

    Article  CAS  Google Scholar 

  • Hu R, He Y, Arowolo MA, Wu S, He J (2019) Polyphenols as potential attenuators of heat stress in poultry production. Antioxidants 8(3):67

    Google Scholar 

  • IPCC (2014) Mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: Mitigation of climate change contribution of working group third to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Irshad A, Kandeepan G, Kumar S, Ashish KA, Vishnuraj MR, Shukla V (2012) Factors influencing carcass composition of livestock: a review. J Animal Product Adv 3:177–186

    Google Scholar 

  • Jahejo A, Leghari I, Sethar A, Rao M, Nisa M, Sethar G (2016) Effect of heat stress and ascorbic acid on gut morphology of broiler chicken. Sindh Univ Res J 48(4)

  • Jeronen E, Peura M-L, Hissa R (1978) Effect of temperature stress on brain monoamine content in the pigeon. J Therm Biol 3(1):25–30. https://doi.org/10.1016/0306-4565(78)90032-3

    Article  CAS  Google Scholar 

  • Kamada N, Seo S-U, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321. (Review Article). https://doi.org/10.1038/nri3430

    Article  CAS  Google Scholar 

  • Kanani PB, Daneshyar M, Aliakbarlu J, Hamian F (2017) Effect of dietary turmeric and cinnamon powders on meat quality and lipid peroxidation of broiler chicken under heat stress condition. InVeterinary Research Forum Faculty of Veterinary Medicine, Urmia University, Urmia, Iran 8(2):163

  • Kapetanov M, Pajić M, Ljubojević D, Pelić ML (2015) Heat stress in poultry industry. Arch Vet Med 8(2):87–101

    Google Scholar 

  • Karami M, Torki M, Mohammadi H (2018) Effects of dietary supplemental chromium methionine, zinc oxide, and ascorbic acid on performance, egg quality traits, and blood parameters of laying hens subjected to heat stress. J Appl Anim Res 46:1174–1184

    CAS  Google Scholar 

  • Khajavi M, Rahimi S, Hassan ZM, Kamali MA, Mousavi T (2003) Effect of feed restriction early in life on humoral and cellular immunity of two commercial broiler strains under heat stress conditions. Br Poult Sci 44(3):490–497. https://doi.org/10.1080/000071660310001598328

    Article  CAS  Google Scholar 

  • Kilic I, Simsek E (2013) The effects of heat stress on egg production and quality of laying hens. J Anim Vet Adv 12(1):42–47

    Google Scholar 

  • King LM, Brillard JP, Garrett WM, Bakst MR, Donoghue AM (2002) Segregation of spermatozoa within sperm storage tubules of fowl and turkey hens. Reproduction 123(1):79–86. https://doi.org/10.1530/rep.0.1230079

    Article  CAS  Google Scholar 

  • Koh K, Macleod MG (1999) Circadian variation in heat production and respiratory quotient in growing broilers maintained at different food intakes and ambient temperatures. Br Poult Sci 40(3):353–356. https://doi.org/10.1080/00071669987449

    Article  CAS  Google Scholar 

  • Kutlu HR, Forbes JM (1993) Changes in growth and blood parameters in heat-stressed broiler chicks in response to dietary ascorbic acid. Livest Prod Sci 36(4):335–350. https://doi.org/10.1016/0301-6226(93)90050-R

    Article  Google Scholar 

  • Lara LJ, Rostagno MH (2013) Impact of Heat Stress on Poultry Production. Animals 3(2):356–369

    Google Scholar 

  • Laudadio V, Dambrosio A, Normanno G, Khan RU, Naz S, Rowghani E, Tufarelli V (2012) Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biol Res 5(2):88–92

    Google Scholar 

  • Li M, Wu J, Chen Z (2015) Effects of Heat Stress on the Daily Behavior of Wenchang Chickens. Braz J Poultry Sci 17:559–566. https://doi.org/10.1590/1516-635X1704559-566

    Article  Google Scholar 

  • Lin H, Jiao HC, Buyse J, Decuypere E (2006) Strategies for preventing heat stress in poultry. World's Poultry Sci J 62(1):71–86. https://doi.org/10.1079/WPS200585

    Article  Google Scholar 

  • Lu Q, Wen J, Zhang H (2007) Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult Sci 86(6):1059–1064. https://doi.org/10.1093/ps/86.6.1059

    Article  CAS  Google Scholar 

  • Mack LA, Felver-Gant JN, Dennis RL, Cheng HW (2013) Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult Sci 92(2):285–294. https://doi.org/10.3382/ps.2012-02589

    Article  CAS  Google Scholar 

  • Mahmoud KZ, Yaseen AM (2005) Effect of feed withdrawal and heat acclimatization on stress responses of male broiler and layer-type chickens (Gallus gallus domesticus). Asian-Australas J Anim Sci 18(10):1445–1450. https://doi.org/10.5713/ajas.2005.1445

    Article  Google Scholar 

  • Mahmoud UT, Abdel-Rahman MAM, Darwish MHA, Applegate TJ, Cheng H-w (2015) Behavioral changes and feathering score in heat stressed broiler chickens fed diets containing different levels of propolis. Appl Anim Behav Sci 166:98–105. https://doi.org/10.1016/j.applanim.2015.03.003

    Article  Google Scholar 

  • Mahmoud H, Dawood MA, Assar MH, Ijiri D, Ohtsuka A (2019) Dietary Moringaoleifera improves growth performance, oxidative status, and immune related gene expression in broilers under normal and high temperature conditions. J Therm Biol 82:157–163

    Google Scholar 

  • Maloney SK (1998) Heat storage, not sensible heat loss, increases in high temperature, high humidity conditions. World's Poultry Sci J 54(4):347–352. https://doi.org/10.1079/WPS19980024

    Article  Google Scholar 

  • Mascarenhas NMH, Costa ANL, Pereira MLL, Caldas ACA, Batista LF, Goncalves EL (2018) Thermal conditioning in the broiler production: challenges and possibilities. J Anim Behav Biometeorol 6:52–55

    Google Scholar 

  • Mashaly MM, Hendricks GL 3rd, Kalama MA, Gehad AE, Abbas AO, Patterson PH (2004) Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci 83(6):889–894. https://doi.org/10.1093/ps/83.6.889

    Article  CAS  Google Scholar 

  • Maxwell MH, Hocking PM, Robertson GW (1992) Differential leucocyte responses to various degrees of food restriction in broilers, turkeys and ducks. Br Poult Sci 33(1):177–187. https://doi.org/10.1080/00071669208417455

    Article  CAS  Google Scholar 

  • May JD, Deaton JW, Reece FN, Branton SL (1986) Effect of acclimation and heat stress on thyroid hormone concentration. Poult Sci 65(6):1211–1213. https://doi.org/10.3382/ps.0651211

    Article  CAS  Google Scholar 

  • McDaniel CD, Bramwell RK, Howarth B Jr (1996) The male contribution to broiler breeder heat-induced infertility as determined by sperm-egg penetration and sperm storage within the hen’s oviduct. Poult Sci 75(12):1546–1554. https://doi.org/10.3382/ps.0751546

    Article  CAS  Google Scholar 

  • McFarlane JM, Curtis SE, Shanks RD, Carmer SG (1989) Multiple concurrent stressors in chicks.: 1. Effect on weight gain, feed intake, and behavior. Poult Sci 68(4):501–509. https://doi.org/10.3382/ps.0680501

    Article  CAS  Google Scholar 

  • McKechnie AE, Wolf BO (2010) Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett 6(2):253–256. https://doi.org/10.1098/rsbl.2009.0702

    Article  Google Scholar 

  • McKee S, Sams A (1997) The effect of seasonal heat stress on rigor development and the incidence of pale, exudative turkey meat. Poult Sci 76(11):1616–1620. https://doi.org/10.1093/ps/76.11.1616

    Article  CAS  Google Scholar 

  • Melesse A (2014) Significance of scavenging chicken production in the rural community of Africa for enhanced food security. World’s Poultry Sci J 70(3):593–606. https://doi.org/10.1017/S0043933914000646

    Article  Google Scholar 

  • Melesse A, Tiruneh W, Negesse T (2011) Effects of feeding Moringa stenopetala leaf meal on nutrient intake and growth performance of Rhode Island Red chicks under tropical climate. Tropic Subtropic Agroecosyst 14(2):485–492

    Google Scholar 

  • Merat P (1990) Pleiotropic and associated effects of major genes. In: Crawford RD (ed) Poultry breeding and gene. Elsevier, Amsterdam, pp 429–467

    Google Scholar 

  • Mujahid A, Pumford NR, Bottje W, Nakagawa K, Miyazawa T, Akiba Y, Toyomizu M (2007) Mitochondrial Oxidative damage in chicken skeletal muscle induced by acute heat stress. J Poult Sci 44(4):439–445. https://doi.org/10.2141/jpsa.44.439

    Article  CAS  Google Scholar 

  • Murawska D (2017) The effect of age on growth performance and carcass quality parameters in different poultry species. In: M. Manafi, editor, Poultry Science. p. 33–50

  • Musharaf NA, Latshaw JD (1999) Heat increment as affected by protein and amino acid nutrition. World’s Poultry Sci J 55(3):233–240. https://doi.org/10.1079/WPS19990017

    Article  Google Scholar 

  • Mushtaq T, Mirza MA, Athar M, Hooge DM, Ahmad T, Ahmad G, Mushtaq MMH, Noreen U (2007) Dietary sodium and chloride for twenty-nine-to forty-two-day-old broiler chickens at constant electrolyte balance under subtropical summer conditions. J Appl Poultry Res 16(2):161–170. https://doi.org/10.1093/japr/16.2.161

    Article  CAS  Google Scholar 

  • Nawab A, Ibtisham F, Li G, Kieser B, Wu J, Liu W, Zhao Y, Nawab Y, Li K, Xiao M, An L (2018) Heat stress in poultry production: mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol 78:131–139

    Google Scholar 

  • Nidamanuri A, Murugesan S, Mahapatra R (2017) Effect of heat stress on physiological parameters of layers-a review. Int J Livestock Res 7:1–17

    Google Scholar 

  • Nolan WF, Weathers WW, Sturkie PD (1978) Thermally induced peripheral blood flow changes in chickens. J Appl Physiol 44(1):81–84. https://doi.org/10.1152/jappl.1978.44.1.81

    Article  CAS  Google Scholar 

  • Obidi J, Onyeanusi B, Rekwot P, Ayo J, Dzenda T (2008) Seasonal variations in seminal characteristics of Shikabrown breeder cocks. Int J Poult Sci 7(12):1219–1223

    Google Scholar 

  • Ogle CK, Valente JF, Guo X, Li B-G, Ogle JD, Alexander JW (1997) Thermal injury induces the development of inflammatory macrophages from nonadherent bone marrow cells. Inflammation 21(6):569–582. https://doi.org/10.1023/A:1027377904641

    Article  CAS  Google Scholar 

  • Oloyo A, Ojerinde A (2019) Poultry housing management. In: Poultry – An advanced Learning. Kamboh AA (ed) Intech Open Publisher. https://doi.org/10.5772/intechopen.83811

  • Pawar SS, Sajjanar B, Lonkar VD, Kurade NP, Kadam AS, Nirmal AV, Brahmane MP, Bal SK (2016) Assessing and mitigating the impact of heat stress on poultry. Adv Anim Vet Sci 4(6):332–341

    Google Scholar 

  • Peek HW, Landman WJM (2011) Coccidiosis in poultry: anticoccidial products, vaccines and other prevention strategies. Vet Q 31(3):143–161. https://doi.org/10.1080/01652176.2011.605247

    Article  CAS  Google Scholar 

  • Petracci M, Bianchi M, Cavani C (2009) The European perspective on pale, soft, exudative conditions in poultry. Poult Sci 88(7):1518–1523

    CAS  Google Scholar 

  • Piestun Y, Harel M, Barak M, Yahav S, Halevy O (2009) Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. J Appl Physiol 106(1):233–240. https://doi.org/10.1152/japplphysiol.91090.2008

    Article  Google Scholar 

  • Prieto MT, Campo JL (2010) Effect of heat and several additives related to stress levels on fluctuating asymmetry, heterophil: lymphocyte ratio, and tonic immobility duration in White Leghorn chicks. Poult Sci 89(10):2071–2077

    CAS  Google Scholar 

  • Qureshi AA (2001) Open house tips for layers in hot climate zone. World Poultry 17:32–34

    Google Scholar 

  • Rath PK, Behura NC, Sahoo SP, Panda P, Mandal KD, Panigrahi PN (2015) Amelioration of Heat Stress for Poultry Welfare: A Strategic Approach. Int J Livestock Res 5(3):1–9. https://doi.org/10.5455/ijlr.20150330093915

    Article  Google Scholar 

  • Ratriyanto A, Indreswari R (2014) Effects of protein levels and supplementation of methyl group donor on nutrient digestibility and performance of broiler chickens in the tropics. Int J Poult Sci 13(10):575–581

    CAS  Google Scholar 

  • Ratriyanto A, Mosenthin R (2018) Osmoregulatory function of betaine in alleviating heat stress in poultry. J Anim Physiol Anim Nutr 102(6):1634–1650

    CAS  Google Scholar 

  • Ratriyanto A, Prastowo S (2019) Floor space and betaine supplementation alter the nutrient digestibility and performance of Japanese quail in a tropical environment. J Therm Biol 83:80–86

    CAS  Google Scholar 

  • Ratriyanto A, Indreswari R, Nuhriawangsa AMP (2017) Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails. Revista Brasileira De Ciencia Avicola 19(3):445–454

    Google Scholar 

  • Reece FN, Deaton JW, Kubena LF (1972) Effects of high temperature and humidity on heat prostration of broiler chickens. Poult Sci 51(6):2021–2025. https://doi.org/10.3382/ps.0512021

    Article  CAS  Google Scholar 

  • Rios RL, Bertechini AG, Carvalho JC, Castro SF, Costa VA (2009) Effect of cage density on the performance of 25-to 84-week-old laying hens. Braz J Poultry Sci 11(4):257–262

    Google Scholar 

  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag 16:145–163. https://doi.org/10.1016/j.crm.2017.02.001

    Article  Google Scholar 

  • Rozenboim I, Tako E, Gal-Garber O, Proudman JA, Uni Z (2007) The effect of heat stress on ovarian function of laying hens. Poult Sci 86(8):1760–1765. https://doi.org/10.1093/ps/86.8.1760

    Article  CAS  Google Scholar 

  • Ruvio JF, Schassi L, Araujo HB, Damasceno FA, Yanagi Junior T (2017) Estimation of heat dissipation in broiler chickens during the first two weeks of life. Braz J Agric 92(3):248–260

    Google Scholar 

  • Sadeghi AA, Moghaddam M (2018) The effects of turmeric, cinnamon, ginger and garlic powder nutrition on antioxidant enzymes’ status and hormones involved in energy metabolism of broilers during heat stress. Iranian J Appl Anim Sci 8(1):125–130

    CAS  Google Scholar 

  • Saeed M, Abbas G, Alagawany M, Alikamboh A, Abd El-Hack E, Khafaga AF, Chao S (2019) Heat stress management in poultry farms: acomprehensive overview. J Therm Biol 84:414–425

    Google Scholar 

  • Safdar A, Maghami S (2014) Heat stress in poultry: practical tips. Eur J Exp Biol 4:625–631

    Google Scholar 

  • Sahin K, Sahin N, Onderci M, Yaralioglu S, Kucuk O (2001) Protective role of supplemental vitamin E on lipid peroxidation, vitamins E, A and some mineral concentrations of broilers reared under heat stress. Veterinarni Medicina-Praha 46(5):140–144

    CAS  Google Scholar 

  • Sands JS, Smith MO (2002) Effects of dietary manganese proteinate or chromium picolinatesupplementation on plasma insulin, glucagons, glucose and serum lipids in broiler chickens rearedunder thermo-neutral or heat stress conditions. Int J Poult Sci 1:145–149

    Google Scholar 

  • Santos MM, Souza-Junior JBF, Queiroz JPAF, Costa MKO, Lima HFF, Arruda AMV, Costa LLM (2020) Broilers’ behavioural adjustments when submitted to natural heat stress and fed different maize particle sizes in the diet. J Agric Sci (Camb) 157(9-10):743–748

    Google Scholar 

  • Scanes CG (2014) Sturkie’s avian physiology, 6th edn. Elsevier, Londan

    Google Scholar 

  • Shakeri M, Cottrell JJ, Wilkinson S, Ringuet M, Furness JB, Dunshea FR (2018) Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals 8(10):162. https://doi.org/10.3390/ani8100162

    Article  Google Scholar 

  • Sharif A, Ahmad T (2018) Preventing vaccine failure in poultry flocks. Preventing vaccine failure in poultry flocks. In: immunization-vaccine adjuvant delivery system and strategies. N. Wang and T. Wang, (eds). IntechOpen. https://doi.org/10.5772/intechopen.79330

  • Sohail MU, Hume ME, Byrd JA, Nisbet DJ, Ijaz A, Sohail A, Shabbir MZ, Rehman H (2012) Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult Sci 91(9):2235–2240. https://doi.org/10.3382/ps.2012-02182

    Article  CAS  Google Scholar 

  • Souza-Junior JBF, Oliveira VRM, Arruda AMV, Silva AM, Costa LLM (2015) The relationship between corn particle size and thermoregulation of laying hens in an equatorial semi-arid environment. Int J Biometeorol 59:121–125

    Google Scholar 

  • Souza-Junior JBF, El-Sabrout K, Arruda AMV, Costa LLM (2019) Estimating sensible heat loss in laying hens through thermal imaging. Comput Electron Agric 166:105038. https://doi.org/10.1016/j.compag.2019.105038

    Article  Google Scholar 

  • Speedy AW (2002) Overview of world feed protein needs and supply. In: FAO expert consultation and workshop on protein sources for the animal feed industry, FAO. Bangkok, Thailand, pp 9-27

  • Tellez J, Tellez-Isaias G, Dridi S (2017) Heat stress and gut health in broilers: role of tight junction proteins. Adv Nutr Food Technol 3:1–4. https://doi.org/10.17140/AFTNSOJ-3-e010

    Article  Google Scholar 

  • Thiruvenkadan AK, Prabakaran R, Panneerselvam S (2011) Broiler breeding strategies over the decades: an overview. World’s Poultry Sci J 67(2):309–336. https://doi.org/10.1017/S0043933911000328

    Article  Google Scholar 

  • Usayran N, Farran MT, Awadallah HH, Al-Hawi IR, Asmar RJ, Ashkarian VM (2001) Effects of added dietary fat and phosphorus on the performance and egg quality of laying hens subjected to a constant high environmental temperature. Poult Sci 80(12):1695–1701. https://doi.org/10.1093/ps/80.12.1695

    Article  CAS  Google Scholar 

  • Varasteh S, Braber S, Akbari P, Garssen J, Fink-Gremmels J (2015) Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS ONE 10(9):e0138975. https://doi.org/10.1371/journal.pone.0138975

    Article  CAS  Google Scholar 

  • Vladimir Z, Martina L, David H (2018) The effect of phytogenic additive on behavior during mild–moderate heat stress in broilers. Acta Univ Agricult Silviculturae Mendelianae Brunensis 66(4):939–944

    Google Scholar 

  • Wang RH, Liang RR, Lin H, Zhu LX, Zhang YM, Mao YW, Dong PC, Niu LB, Zhang MH, Luo X (2017) Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult Sci 96(3):738–746

    CAS  Google Scholar 

  • Williams A, Audsley E, Sandars D (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities: Main Report, www.defra.gov.uk., Cranfield University and Defra

  • Wolfenson D, Frei YF, Snapir N, Berman A (1981) Heat stress effects on capillary blood flow and its redistribution in the laying hen. Pflugers Arch 390(1):86–93. https://doi.org/10.1007/BF00582717

    Article  CAS  Google Scholar 

  • Xing T, Wang P, Zhao L, Liu R, Zhao X, Xu X, Zhou G (2016) A comparative study of heat shock protein 70 in normal and PSE (pale, soft, exudative)-like muscle from broiler chickens. Poult Sci 95(10):2391–2396

    CAS  Google Scholar 

  • Yalçin S, Çabuk M, Bruggeman V, Babacanoğlu E, Buyse J, Decuypere E, Siegel PB (2008) Acclimation to heat during incubation: 3. Body weight, cloacal temperatures, and blood acid-base balance in broilers exposed to daily high temperatures. Poult Sci 87(12):2671–2677. https://doi.org/10.3382/ps.2008-00164

    Article  Google Scholar 

  • You S, Foster LK, Silsby JL, Halawani MEE, Foster DN (1995) Sequence analysis of the turkey LH β subunit and its regulation by gonadotrophin-releasing hormone and prolactin in cultured pituitary cells. J Mol Endocrinol 14(1):117–129. https://doi.org/10.1677/jme.0.0140117

    Article  CAS  Google Scholar 

  • Yu J, Bao E, Yan J, Lei L (2008) Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones 13(3):327–335. https://doi.org/10.1007/s12192-008-0031-7

    Article  CAS  Google Scholar 

  • Zaboli G, Huang X, Feng X, Ahn DU (2018) How can heat stress affect chicken meat quality? – a review. Poult Sci 98(3):1551–1556. https://doi.org/10.3382/ps/pey399

    Article  CAS  Google Scholar 

  • Zhang JF, Hu ZP, Lu CH, Yang MX, Zhang LL, Wang T (2015) Dietary curcumin supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway. J Anim Sci 93:1656–1665

    CAS  Google Scholar 

  • Zhao Y, Aarnink AJA, Dijkman R, Fabri T, de Jong MCM, Groot Koerkamp PWG (2012) Effects of temperature, relative humidity, absolute humidity, and evaporation potential on survival of airborne Gumboro vaccine virus. Appl Environ Microbiol 78(4):1048–1054. https://doi.org/10.1128/AEM.06477-11

    Article  CAS  Google Scholar 

  • Zhou WT, Fujita M, Yamamoto S, Iwasaki K, Ikawa R, Oyama H, Horikawa H (1998) Effects of glucose in drinking water on the changes in whole blood viscosity and plasma osmolality of broiler chickens during high temperature exposure. Poult Sci 77(5):644–647. https://doi.org/10.1093/ps/77.5.644

    Article  CAS  Google Scholar 

  • Zulkifli I, Abdullah N, Azrin NM, Ho YW (2000) Growth performance and immune response of two commercial broiler strains fed diets containing Lactobacillus cultures and oxytetracycline under heat stress conditions. Br Poult Sci 41(5):593–597. https://doi.org/10.1080/713654979

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sejian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 38 kb)

ESM 2

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana, G.D., Sejian, V., Lees, A.M. et al. Heat stress and poultry production: impact and amelioration. Int J Biometeorol 65, 163–179 (2021). https://doi.org/10.1007/s00484-020-02023-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-02023-7

Keywords

Navigation