Skip to main content
Log in

Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aviles H, Johnson MT, Monroy FP (2004) Effects of cold stress on spleen cell proliferation and cytokine production during chronic Toxoplasma gondii infection. Neuroimmunomodulation 11:93–102. doi:10.1159/000075318

    Article  CAS  Google Scholar 

  • Callaly E, Mikulich O, Silke B (2013) Increased winter mortality: the effect of season, temperature and deprivation in the acutely ill medical patient. European Journal of Internal Medicine 24:546–551. doi:10.1016/j.ejim.2013.02.004

    Article  Google Scholar 

  • Chiou SY, Lee YS, Jeng MJ, Tsao PC, Soong WJ (2013) Moderate hypothermia attenuates oxidative stress injuries in alveolar epithelial A549 cells. Exp Lung Res 39:217–228. doi:10.3109/01902148.2013.792881

    Article  CAS  Google Scholar 

  • Eliasson M, Morgelin M, Farber JM, Egesten A, Albiger B (2010) Streptococcus pneumoniae induces expression of the antibacterial CXC chemokine MIG/CXCL9 via MyD88-dependent signaling in a murine model of airway infection. Microbes and Infection/Institut Pasteur 12:565–573. doi:10.1016/j.micinf.2010.03.014

    Article  CAS  Google Scholar 

  • Enhorning G, Hohlfeld J, Krug N, Lema G, Welliver RC (2000) Surfactant function affected by airway inflammation and cooling: possible impact on exercise-induced asthma. The European Respiratory Journal 15:532–538

    Article  CAS  Google Scholar 

  • Fujie H et al. (2012) A distinct regulatory role of Th17 cytokines IL-17A and IL-17F in chemokine secretion from lung microvascular endothelial cells. Inflammation 35:1119–1131. doi:10.1007/s10753-011-9419-0

    Article  CAS  Google Scholar 

  • Giberson PK, Kim CK, Hutchison S, Yu W, Junker A, Weinberg J (1997) The effect of cold stress on lymphocyte proliferation in fetal ethanol-exposed rats. Alcohol Clin Exp Res 21:1440–1447

    Article  CAS  Google Scholar 

  • Goundasheva D, Andonova M, Ivanov V (1994) Changes in some parameters of the immune response in rats after cold stress. Zentralblatt fur Veterinarmedizin Reihe B Journal of Veterinary Medicine Series B 41:670–674

    CAS  Google Scholar 

  • Grommes J, Soehnlein O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17:293–307. doi:10.2119/molmed.2010.00138

    Article  CAS  Google Scholar 

  • Hangalapura BN, Kaiser MG, Poel JJ, Parmentier HK, Lamont SJ (2006) Cold stress equally enhances in vivo pro-inflammatory cytokine gene expression in chicken lines divergently selected for antibody responses. Developmental and Comparative Immunology 30:503–511. doi:10.1016/j.dci.2005.07.001

    Article  CAS  Google Scholar 

  • Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–549

    Article  CAS  Google Scholar 

  • Iarosh AM, Kurch TK (1995) The effect of cold exposure on the respiratory function in children suffering from inflammatory lung diseases Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury:9–11

  • Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. Journal of Aerosol medicine and Pulmonary Drug Delivery 23:243–252. doi:10.1089/jamp.2009.0775

    Article  Google Scholar 

  • Jones R, Baetjer AM, Reid L (1971) Effect of extremes of temperature and humidity on the goblet cell count in the rat airway epithelium. British Journal of Industrial Medicine 28:369–373

    CAS  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517. doi:10.1146/annurev.immunol.021908.132710

    Article  CAS  Google Scholar 

  • Kuipers H et al. (2003) Lipopolysaccharide-induced suppression of airway Th2 responses does not require IL-12 production by dendritic cells. J Immunol 171:3645–3654

    Article  CAS  Google Scholar 

  • Kwak DJ, Augustine NH, Borges WG, Joyner JL, Green WF, Hill HR (2000) Intracellular and extracellular cytokine production by human mixed mononuclear cells in response to group B streptococci. Infection and Immunity 68:320–327

    Article  CAS  Google Scholar 

  • Li M, Li Q, Yang G, Kolosov VP, Perelman JM, Zhou XD (2011) Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. The Journal of Allergy and Clinical Immunology 128(626–634):e621–e625. doi:10.1016/j.jaci.2011.04.032

    Google Scholar 

  • Lowen AC, Steel J (2014) Roles of humidity and temperature in shaping influenza seasonality. Journal of Virology 88:7692–7695. doi:10.1128/JVI.03544-13

    Article  CAS  Google Scholar 

  • Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens 3:1470–1476. doi:10.1371/journal.ppat.0030151

    Article  CAS  Google Scholar 

  • Lundy SK, Berlin AA, Lukacs NW (2003) Interleukin-12-independent down-modulation of cockroach antigen-induced asthma in mice by intranasal exposure to bacterial lipopolysaccharide. The American Journal of Pathology 163:1961–1968. doi:10.1016/S0002-9440(10)63554-7

    Article  CAS  Google Scholar 

  • Luo B et al. (2014) Rat lung response to PM2.5 exposure under different cold stresses. International Journal of Environmental Research and Public Health 11:12915–12926

    Article  CAS  Google Scholar 

  • Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L379–L399. doi:10.1152/ajplung.00010.2008

    Article  CAS  Google Scholar 

  • Miller JA, Noble WC (1916) The Effects of Exposure to Cold Upon Experimental Infection of the Respiratory Tract. The Journal of Experimental Medicine 24:223–232

    Article  CAS  Google Scholar 

  • Mourtzoukou EG, Falagas ME (2007) Exposure to cold and respiratory tract infections. The International Journal of Tuberculosis and Lung Disease: The Official Journal of the International Union Against Tuberculosis and Lung Disease 11:938–943

    CAS  Google Scholar 

  • Nguyen KD et al. (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108. doi:10.1038/nature10653

    Article  CAS  Google Scholar 

  • Nie L, Xiang R, Zhou W, Lu B, Cheng D, Gao J (2008) Attenuation of acute lung inflammation induced by cigarette smoke in CXCR3 knockout mice. Respir Res 9:82. doi:10.1186/1465-9921-9-82

    Article  Google Scholar 

  • Opitz B, van Laak V, Eitel J, Suttorp N (2010) Innate immune recognition in infectious and noninfectious diseases of the lung. American Journal of Respiratory and Critical Care Medicine 181:1294–1309. doi:10.1164/rccm.200909-1427SO

    Article  CAS  Google Scholar 

  • Oztuna F, Ozlu T, Bulbul Y, Buruk K, Topbas M (2006) Does cold environment affect Streptococcus pneumoniae adherence to rat buccal epithelium? Respiration; International review of Thoracic Diseases 73:546–551. doi:10.1159/000090160

    Article  Google Scholar 

  • Pio A, Kirkwood BR, Gove S (2010) Avoiding hypothermia, an intervention to prevent morbidity and mortality from pneumonia in young children. Pediatr Infect Dis J 29:153–159

    Article  Google Scholar 

  • Rehwinkel J et al. (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140:397–408. doi:10.1016/j.cell.2010.01.020

    Article  CAS  Google Scholar 

  • Reutershan J, Basit A, Galkina EV, Ley K (2005) Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 289:L807–L815. doi:10.1152/ajplung.00477.2004

    Article  CAS  Google Scholar 

  • Rittirsch D et al. (2008) Acute lung injury induced by lipopolysaccharide is independent of complement activation. J Immunol 180:7664–7672

    Article  CAS  Google Scholar 

  • Sabnis AS, Reilly CA, Veranth JM, Yost GS (2008) Increased transcription of cytokine genes in human lung epithelial cells through activation of a TRPM8 variant by cold temperatures. Am J Physiol Lung Cell Mol Physiol 295:L194–L200. doi:10.1152/ajplung.00072.2008

    Article  CAS  Google Scholar 

  • Salkind NJ, Rasmussen K (2007) Encyclopedia of measurement and statistics. SAGE Publications, Thousand Oaks, Calif

    Book  Google Scholar 

  • Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Marchi LF, Mantovani B (2012) Chronic cold stress in mice induces a regulatory phenotype in macrophages: correlation with increased 11beta-hydroxysteroid dehydrogenase expression. Brain Behav Immun 26:50–60. doi:10.1016/j.bbi.2011.07.234

    Article  CAS  Google Scholar 

  • Seys SF, Daenen M, Dilissen E, Van Thienen R, Bullens DM, Hespel P, Dupont LJ (2013) Effects of high altitude and cold air exposure on airway inflammation in patients with asthma. Thorax 68:906–913. doi:10.1136/thoraxjnl-2013-203280

    Article  Google Scholar 

  • Sooryanarain H, Elankumaran S (2015) Environmental role in influenza virus outbreaks. Annual Review of Animal Biosciences 3:347–373. doi:10.1146/annurev-animal-022114-111017

    Article  Google Scholar 

  • Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13:251–276. doi:10.1146/annurev.iy.13.040195.001343

    Article  CAS  Google Scholar 

  • Vogel AJ, Harris S, Marsteller N, Condon SA, Brown DM (2014) Early cytokine dysregulation and viral replication are associated with mortality during lethal influenza infection. Viral Immunology 27:214–224. doi:10.1089/vim.2013.0095

    Article  CAS  Google Scholar 

  • Wang HM, Bodenstein M, Markstaller K (2008) Overview of the pathology of three widely used animal models of acute lung injury. European Surgical Research Europaische Chirurgische Forschung Recherches Chirurgicales Europeennes 40:305–316. doi:10.1159/000121471

    Article  CAS  Google Scholar 

  • Xu Z, Liu Y, Ma Z, Li S, Hu W, Tong S (2014) Impact of temperature on childhood pneumonia estimated from satellite remote sensing. Environmental Research 132:334–341. doi:10.1016/j.envres.2014.04.021

    Article  CAS  Google Scholar 

  • You QH, Zhang D, Niu CC, Zhu ZM, Wang N, Yue Y, Sun GY (2014) Expression of IL-17A and IL-17F in lipopolysaccharide-induced acute lung injury and the counteraction of anisodamine or methylprednisolone. Cytokine 66:78–86. doi:10.1016/j.cyto.2013.12.019

    Article  CAS  Google Scholar 

  • Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37. doi:10.1097/AIA.0b013e318034194e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Korea Institute of Oriental Medicine (KIOM, Grant No. K14305) and by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MISP), Government of Korea (Grant No. 2014R1A5A20009936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Tae Ha.

Ethics declarations

All experimental procedures followed the Guidelines for the Care and Use of Laboratory Animals of the National Institutes of Health of Korea, and all the experiments were approved by the Institutional Animal Care and Use Committee of Pusan National University (Busan, Korea).

Electronic supplementary material

ESM 1

(DOCX 1.16 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, SY., Park, MJ., Kim, KH. et al. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury. Int J Biometeorol 60, 1217–1225 (2016). https://doi.org/10.1007/s00484-015-1116-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1116-5

Keywords

Navigation