Skip to main content
Log in

Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R 2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acebes JR, León MC, Rodríguez ML, Del Arco MJ, García-Gallo A, Pérez-de-Paz PL, Rodríguez-Delgado O, Martín VE, Wildpret W (2010) Pteridophyta, Spermatophyta. In: Lista de especies silvestres de Canarias. Hongos, plantas y animales terrestres, Arechavaleta M, Rodríguez S, Zurita N, García A (eds). Gobierno de Canarias, Tenerife

  • Afonso L (1985) La Palma. In: Geografía de Canarias 4, Afonso L (ed). Interinsular Canaria, S/C de Tenerife

  • ArcGIS 9.3. (2008) ESRI® ArcMapTM 9.3. http://www.esri.com

  • Attorre F, Alfo M, De Sanctis M, Francesconi F, Bruno F (2007) Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int J Climatol 27:1825–1843

    Article  Google Scholar 

  • Blasi C, Carranza ML, Filesi L, Tilia A, Acosta A (1999) Relation between climate and vegetation along a Mediterranean-temperate boundary in central Italy. Global Ecol Biogeogr 8:17–27

    Article  Google Scholar 

  • Bolstadt PV, Swank W, Vose J (1998) Predicting Southern Appalachian overstory vegetation with digital terrain data. Landsc Ecol 13:271–283

    Article  Google Scholar 

  • Brown I (2012) Influence of seasonal weather and climate variability on crop yields in Scotland. Int J Biometeorol. doi:10.1007/s00484-012-0588-9

    Google Scholar 

  • Brown DP, Comrie AC (2002) Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Clim Res 22:115–128

    Article  Google Scholar 

  • Brunsdon C, McClatchey J, Unwin DJ (2001) Spatial variations in the average rainfall altitude relationship in Great Britain: an approach using geographically weighted regression. Int J Climatol 21:455–466

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach (2nd edn). Springer, New York

    Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford

    Google Scholar 

  • Camps JO, Ramos MC (2012) Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. Int J Biometeorol 56:853–864. doi:10.1007/s00484-011-0489-3

    Article  Google Scholar 

  • Carracedo JC, Day S, Guillou H, Rodríguez-Badiola E, Canas JA, Pérez-Torrado FJ (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geol Mag 135:591–604

    Article  Google Scholar 

  • Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21(6):1172–1178

    Article  Google Scholar 

  • Collins FC, Bolstad PV (1996) A comparison of spatial interpolation techniques in temperature estimation. Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM. National Center for Geographic Information and Analysis, Santa Barbara, Santa Barbara, CA

  • Del Arco MJ, Acebes JR, Pérez-de-Paz PL (1996) Bioclimatology and climatophilous vegetation of the Island of Hierro. Phytocoenologia 26(4):445–479

    Article  Google Scholar 

  • Del Arco MJ, Acebes JR, Pérez-de-Paz PL, Marrero MC (1999) Bioclimatology and climatophilous vegetation of Hierro (part 2) and La Palma (Canary Islands). Phytocoenologia 29(2):253–290

    Article  Google Scholar 

  • Del Arco MJ, Salas M, Acebes JR, Marrero MC, Reyes-Betancort JA, Pérez-de-Paz PL (2002) Bioclimatology and climatophilous vegetation of Gran Canaria (Canary Islands). Ann Bot Fenn 39:15–41

    Google Scholar 

  • Del Arco MJ, Pérez-de-Paz PL, Acebes JR, González-Mancebo JM, Reyes-Betancort JA, Bermejo JA, de Armas S, González-González R (2006a) Bioclimatology and climatophilous vegetation of Tenerife (Canary Islands). Ann Bot Fenn 43(3):167–192

    Google Scholar 

  • Del Arco MJ, Wildpret W, Pérez-de-Paz PL, Rodríguez-Delgado O, Acebes JR, García-Gallo A, Martín VE, Reyes-Betancort JA, Salas M, Bermejo JA, González R, Cabrera MV, García S (2006b) Mapa de Vegetación de Canarias. GRAFCAN, Santa Cruz de Tenerife

    Google Scholar 

  • Del Arco MJ, Rodríguez-Delgado O, Acebes JR, García-Gallo A, Pérez-de-Paz PL, González-Mancebo JM, González-González R, Garzón-Machado V (2009) Bioclimatology and climatophilous vegetation of Gomera (Canary Islands). Ann Bot Fenn 46:161–191

    Article  Google Scholar 

  • Del Río S, Penas A (2006) Potential areas of evergreen forests in Castile and Leon (Spain) according to future climate change. Phytocoenologia 36(1):45–66

    Article  Google Scholar 

  • Del Río S, Herrero L, Pinto-Gomes C, Penas A (2011) Spatial analysis of mean temperatura trends in Spain over the period 1961–2006. Glob Planet Chang 78:65–75

    Article  Google Scholar 

  • Diodato N (2005) The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Int J Climatol 25:351–363

    Article  Google Scholar 

  • Drogue G, Humbert J, Deraisme J, Mahr N, Freslon N (2002) A statistical–topographic model using an omnidirectional parameterization of the relief for mapping orographic rainfall. Int J Climatol 22:599–613

    Article  Google Scholar 

  • Gavilán R (2005) The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int J Biometeorol 50(2):111–120

    Article  Google Scholar 

  • Gavilán R, Sánchez Mata D, Vilches B, Entrocassi G (2007) Modelling current distribution of Spanish Quercus pyrenaica forest using climatic parameteres. Phytocoenologia 37:561–581

    Article  Google Scholar 

  • Goodale CL, Aber JD, Ollinger SV (1998) Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Clim Res 10:35–49

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goovaerts P (1999) Using elevation to aid the geostatistica mapping of rainfall erosivity. Catena 34:227–242

    Article  Google Scholar 

  • Hartkamp A., De Beurs K, Stein A, White JW (1999) Interpolation Techniques for Climate Variables. NRG-GIS series 99/01. CIMMYT: Mexico, DF

  • Huetz de Lemps A (1969) Le Climat des Iles Canaries. Faculté des Lettres et des Sciences Humaines de Paris-Sorbonne, Paris

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Johansson B, Chen D (2003) The influence of wind and topography on precipitation distribution in Sweden: statistical analysis and modelling. Int J Climatol 23:1523–1535

    Article  Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Arc Gis 9. Using ArcGis Geostatistical Analyst. ESRI, Redlands, CA

  • Kurtzman D, Kadmon R (1999) Mapping of temperature variables in Israel: a comparison of different interpolation methods. Clim Res 13(1):33–43

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21

    Article  Google Scholar 

  • Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Informatics 6:228–241

    Article  Google Scholar 

  • Lobo A, González-Rebollar JL (2010) Model-based discriminant analysis of Iberian potential vegetation and bio-climatic indices. Phys Chem Earth 35:52–56

    Article  Google Scholar 

  • Loidi J, Fernández-González F (2012) Potential natural vegetation: reburying or reboring? J Veg Sci 23:596–604

    Article  Google Scholar 

  • Loidi J, del Arco M, de Paz PLP, Asensi A, Garretas BD, Costa M, Gonzalez TD, Fernandez-Gonzalez F, Izco J, Penas A, Rivas-Martinez S, Sanchez-Mata D (2010) Understanding properly the ‘potential natural vegetation’ concept. J Biogeogr 37(11):209–211

    Article  Google Scholar 

  • Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43(3):163–177

    Article  Google Scholar 

  • Marzol-Jaén MV (1988) La lluvia: un recurso natural para Canarias. Serv. Public. Caja General de Ahorros de Canarias 130 (32): S/C de Tenerife

  • Mesquita S, Sousa AJ (2009) Bioclimatic mapping using geostatistical approaches: application to mainland Portugal. Int J Climatol 29(14):2156–2170

    Article  Google Scholar 

  • Mesquita S, Capelo J, Sousa J (2004) Bioclimatologia da Ilha da Madeira: abordagem numérica. Quercetea 6:47–59

    Google Scholar 

  • Nakamura Y, Krestov PV, Omelko AM (2007) Bioclimate and zonal vegetation in Northeast Asia: first approximation to an integrated study. Phytocoenologia 37(3–4):443–470

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2007) Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theor Appl Climatol 89:195–209

    Article  Google Scholar 

  • Perry M, Hollis D (2005) The generation of monthly gridded datasets for a range of climatic variables over the UK. Int J Climatol 25:1041–1054

    Article  Google Scholar 

  • Prentice KC (1990) Bioclimatic distribution of vegetation for general circulation model studies. J Geophys Res 95:11811–11830

    Article  Google Scholar 

  • Price JP, Gon III SM, Jacobi JD, Matsuwaki D (2007) Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers. HCSU Technical Report 008: Hawaii

  • Reyes-Betancort JA, Wildpret W, León-Arencibia MC (2001) The vegetation of Lanzarote (Canary Islands). Phytocoenologia 31(2):185–247

    Article  Google Scholar 

  • Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España. Itinera Geobotánica 17:1–436

    Google Scholar 

  • Rivas-Martínez S, Rivas S, Penas A (2011) Worldwide bioclimatic classification system. Global Geobotany 1:1–634

    Google Scholar 

  • Rodríguez-Delgado O, García-Gallo A, Marrero-Gómez MV (2005) El bioclima y la biogeografía. In: Patrimonio Natural de la isla de Fuerteventura, Rodríguez-Delgado O (ed) Cabildo de Fuerteventura, Gobierno de Canarias y Centro de la Cultura Popular Canaria: Tenerife.

  • Sarangi A, Cox CA, Madramootoo CA (2005) Geostatistical methods for prediction of spatial variability of rainfall in a mountainous region. Transactions of the American Society of agricultural Engineers 48(3):943–954

    Article  Google Scholar 

  • Schrag AM, Andrew G, Bunn AG, Graumlich LJ (2008) Influence of bioclimatic variables on treeline conifer distribution in the Greater Yellowstone Ecosystem: implications for species of conservation concern. J Biogeogr 35:698–710

    Google Scholar 

  • Somodi I, Zsolt Molnár Z, Ewald J (2012) Towards a more transparent use of the potential natural vegetation concept—an answer to Chiarucci et al. J Veg Sci 23:590–595. doi:10.1111/j.1654-1103.2011.01378.x

  • Tewolde M, Beza T, Costa AC, Painho M (2010) Comparison of different interpolation techniques to map temperature in the southern region of Eritrea. 13th AGILE. International Conference on Geographic Information Science 2010. Guimarães. Portugal

  • Tuhkanen S (1980) Climatic parameters and Indices in plant geography. Acta Phytogeogr Suec 67:1–105

    Google Scholar 

  • Valencia-Barrera RM, Comtois P (2002) Fernández-González D (2002) Bioclimatic indices as a tool in pollen forecasting. Int J Biometeorol 46:171–175

    Article  Google Scholar 

  • Valentini N, Me G, Ferrero R (2001) Spanna F (2001) Use of bioclimatic indexes to characterize phenological phases of apple varieties in Northern Italy. Int J Biometeorol 45:191–195

    Article  CAS  Google Scholar 

  • Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM (2003) Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Clim Res 24:161–180

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the State Meteorological Agency of Spain (AEMET) for providing the necessary climatic data for this study, Ricardo Sanz of the delegation of Santa Cruz de Tenerife, and Julio Leal Pérez in recognition of his help in field work in the island of La Palma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Garzón-Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzón-Machado, V., Otto, R. & del Arco Aguilar, M.J. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques. Int J Biometeorol 58, 887–899 (2014). https://doi.org/10.1007/s00484-013-0670-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0670-y

Keywords

Navigation