Skip to main content

Advertisement

Log in

What effect will a few degrees of climate change have on human heat balance? Implications for human activity

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

While many factors affecting human health that will alter with climate change are being discussed, there has been no discussion about how a warmer future will affect man’s thermoregulation. Using historical climate data for an Australian city and projections for Australia’s climate in 2070, we address the issue using heat balance modelling for humans engaged in various levels of activity from rest to manual labour. We first validate two heat balance models against empirical data and then use the models to predict the number of days at present and in 2070 that (1) sweating will be required to attain heat balance, (2) heat balance will not be possible and hyperthermia will develop, and (3) body temperature will increase by 2.5°C in less than 2 h, which we term “dangerous days”. The modelling is applied to people in an unacclimatised and an acclimatised state. The modelling shows that, for unacclimatised people, outdoor activity will not be possible on 33–45 days per year, compared to 4–6 days per year at present. For acclimatised people the situation is less dire but leisure activity like golf will be not be possible on 5–14 days per year compared to 1 day in 5 years at present, and manual labour will be dangerous to perform on 15–26 days per year compared to 1 day per year at present. It is obvious that climate change will have important consequences for leisure, economic activity, and health in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–c
Fig. 4

Similar content being viewed by others

References

  • Alber-Wallerström B, Holmér I (1985) Efficiency of sweat evaporation in unacclimatized man working in a hot humid environment. Eur J Appl Physiol 54:480–487

    Article  Google Scholar 

  • Anon (1924) Measuring personal comfort with the kata thermometer. Am J Public Health 14:978–979

    Google Scholar 

  • Armstrong LE, Epstein Y, Greenleaf JE, Haymes EM, Hubbard RW, Roberts WO, Thompson PD (1996) Heat and cold illnesses during distance running. Med Sci Sports Exerc 28:R1–R10

    Article  Google Scholar 

  • Avellini BA, Kamon E, Krajewski JT (1980) Physiological responses of physically fit men and women to acclimation to humid heat. J Appl Physiol 49:254–261

    CAS  Google Scholar 

  • Barnosky AD, Hadly EA, Bell CJ (2003) Mammalian response to global warming on varied temporal scales. J Mammal 84:354–368

    Article  Google Scholar 

  • Bedford T, Warner CG (1933) The Influence of radiant heat and air movement on the cooling of the Kata-thermometer. J Hyg Cambridge 33:330–348

    Article  CAS  Google Scholar 

  • Belding HS, Hatch TF (1955) Index for evaluating heat stress in terms of resulting physiological strains. Heat Piping Air Cond 27:129–136

    Google Scholar 

  • Belding HS, Kamon E (1973) Evaporative coefficients for prediction of safe limits in prolonged exposures to work under hot conditions. Fed Proc 32:1598–1601

    CAS  Google Scholar 

  • Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365

    Article  Google Scholar 

  • Bonjer FH (1962) Actual energy expenditure in relation to the physical working capacity. Ergonomics 5:29–31

    Article  Google Scholar 

  • Brikowski TH, Lotan Y, Pearle MS (2008) Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA 105:9841–9846

    Article  CAS  Google Scholar 

  • Budd GM (2008) Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport 11:20–32

    Article  Google Scholar 

  • Bureau of Labor Statistics (2006) The national census of fatal occupational injury. US Department of Labor, Washington DC

    Google Scholar 

  • Cameron AJ, Welborn TA, Zimmet PZ, Dunstan DW, Owen N, Salmon J, Dalton M, Jolley D, Shaw JE (2003) Overweight and obesity in Australia: the 1999–2000 Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Med J Aust 178:427–432

    Google Scholar 

  • Candas V, Libert JP, Vogt JJ (1979) Human skin wettedness and evaporative efficiency of sweating. J Appl Physiol 46:522–528

    CAS  Google Scholar 

  • Cockerell OJ (1935) On the errors involved in the determination of cooling powers and air velocities with a Kata-thermometer. J Hyg Cambridge 35:255–261

    Article  CAS  Google Scholar 

  • CSIRO (2000) Climate variability and climate change - the last 120 million years. CSIRO Atmospheric Research, Melbourne

    Google Scholar 

  • CSIRO (2001) Climate change projections for Australia. Climate Impact Group, CSIRO Atmospheric Research, Melbourne

    Google Scholar 

  • Dessler AE, Sherwood SC (2009) Atmospheric science: a matter of humidity. Science 323:1020–1021

    Article  CAS  Google Scholar 

  • Dhainaut JF, Claessens YE, Ginsburg C, Riou B (2004) Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit Care 8:1–2

    Article  Google Scholar 

  • Driscoll TR, Cripps R, Brotherhood JR (2008) Heat-related injuries resulting in hospitalisation in Australian sport. J Sci Med Sport 11:40–47

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  Google Scholar 

  • Edholm OG, Goldsmith R, Fox RH, Adam JM (1963) Comparison of artificial and natural acclimatization. Fed Proc 22:709–715

    Google Scholar 

  • Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398

    Article  Google Scholar 

  • Fouillet A, Rey G, Wagner V, Laaidi K, Empereur-Bissonnet P, Le Tertre A, Frayssinet P, Bessemoulin P, Laurent F, De Crouy-Chanel P, Jougla E, Hemon D (2008) Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int J Epidemiol 37:309–317

    Article  CAS  Google Scholar 

  • Frye AJ, Kamon E (1983) Sweating efficiency in acclimated men and women exercising in humid and dry heat. J Appl Physiol 54:972–977

    CAS  Google Scholar 

  • Gisolfi CV, Mora F (2000) The hot brain: survival, temperature, and the human body. MIT Press, Cambridge, MA

    Google Scholar 

  • Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86:1032–1039

    CAS  Google Scholar 

  • Green H, Gilbert J, James R, Byard RW (2001) An analysis of factors contributing to a series of deaths caused by exposure to high environmental temperatures. Am J Forensic Med Pathol 22:196–199

    Article  CAS  Google Scholar 

  • Green R, Basu R, Malig B, Broadwin R, Kim J, Ostro B (2010) The effect of temperature on hospital admissions in nine California counties. Int J Public Health 55(2):113–121. doi:10.1007/s00038-009-0076-0

    Google Scholar 

  • Hellon RF, Jones RM, Macpherson RK, Weiner JS (1956) Natural and artificial acclimatization to hot environments. J Physiol (Lond) 132:559–576

    CAS  Google Scholar 

  • Henane R, Valatx JL (1973) Thermoregulatory changes induced during heat acclimatization by controlled hyperthermia in man. J Physiol (Lond) 230:255–271

    CAS  Google Scholar 

  • Hessemer V, Zeh A, Bruck K (1986) Effects of passive heat adaptation and moderate sweatless conditioning on responses to cold and heat. Eur J Appl Physiol Occup Physiol 55:281–289

    Article  CAS  Google Scholar 

  • Hill L, Hargood-Ash D (1919) On the cooling and evaporative powers of the atmosphere, as determined by the kata-thermometer. Proc R Soc Lond B Biol Sci 90:438–447

    Article  CAS  Google Scholar 

  • Inbar O, Morris N, Epstein Y, Gass G (2004) Comparison of thermoregulatory responses to exercise in dry heat among prepubertal boys, young adults and older males. Exp Physiol 89:691–700

    Article  Google Scholar 

  • IUPS Thermal Commission (2001) Glossary of terms for thermal physiology: 3rd edn. Jpn J Physiol 51:245–280

    Google Scholar 

  • Jessen C (2001) Temperature regulation in humans and other mammals. Springer, Berlin

    Google Scholar 

  • Kamon E, Avellini B (1976) Physiologic limits to work in the heat and evaporative coefficient for women. J Appl Physiol 41:71–76

    CAS  Google Scholar 

  • Kenney WL, Zeman MJ (2002) Psychrometric limits and critical evaporative coefficients for unacclimated men and women. J Appl Physiol 92:2256–2263

    Article  Google Scholar 

  • Kenney WL, DeGroot DW, Alexander Holowatz L (2004) Extremes of human heat tolerance: life at the precipice of thermoregulatory failure. J Therm Biol 29:479–485

    Article  Google Scholar 

  • Kondo N, Nishiyasu T, Ikegami H (1996) The influence of exercise intensity on sweating efficiency of the whole body in a mild thermal condition. Ergonomics 39:225–231

    Article  CAS  Google Scholar 

  • Lambrechts JV (1972) A critical comparison of specific cooling power and the wet kata thermometer in hot mining environments. J S Afr I Min Metall 73:169–174

    Google Scholar 

  • Lind AR (1973) Prediction of safe limits for prolonged occupational exposure to heat. Fed Proc 32:1602–1606

    CAS  Google Scholar 

  • McArdle WD, Katch FI, Katch VL (2001) Exercise physiology. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869

    Article  Google Scholar 

  • Mitchell D, Wyndham CH, Vermeulen AJ, Hodgson T, Atkins AR, Hofmeyr HS (1969) Radiant and convective heat transfer of nude men in dry air. J Appl Physiol 26:111–118

    CAS  Google Scholar 

  • Mitchell D, Fuller A, Hetem RS, Maloney SK (2008) Climate change physiology: the challenge of the decades? In: Morris S, Vosloo A (eds) 4th CPB Meeting in Africa: Mara 2008 “Molecules to migration: The pressures of life”. Medimond, Bologna, Italy, pp 383–394

    Google Scholar 

  • Moss KN (1927) Gases, dust and heat in mines. Griffin, London

    Google Scholar 

  • Myrup LO, Morgan DL (1972) Numerical model of the urban atmosphere. Volume I The city-surface interface. University of California, Davis

    Google Scholar 

  • Phillips PA, Johnston CI, Gray L (1993) Disturbed fluid and electrolyte homoeostasis following dehydration in elderly people. Age Ageing 22:S26–S33

    CAS  Google Scholar 

  • Rapp GM (1973) Kata thermometer as an instrument for measuring environmental and human factors for man. Arch Sci Physiol 27:A271–A284

    Google Scholar 

  • Rees JP (1926) The effect of ventilation on the cooling power of the air, (11th Report to the Committee on ‘The control of atmospheric conditions in mines’). Trans Inst Min Eng 71:1–470

    Google Scholar 

  • Regan JM, MacFarlane DJ, Taylor NAS (1996) An evaluation of the role of skin temperature during heat adaptation. Acta Physiol Scand 158:365–375

    Article  CAS  Google Scholar 

  • Robinson S (1949) Physiological adjustments to heat. In: Newburgh LH (ed) Physiology of heat regulation and the science of clothing. Saunders, Philadelphia, pp 193–231

    Google Scholar 

  • Sawka MN, Francesconi RP, Young AJ, Pandolf KB (1984) Influence of hydration level and body-fluids on exercise performance in the heat. J Am Med Assoc 252:1165–1169

    Article  CAS  Google Scholar 

  • Simonson DC, DeFronzo RA (1990) Indirect calorimetry: methodological and interpretative problems. Am J Physiol Endocrinol Metab 258:E399–E412

    CAS  Google Scholar 

  • Stewart J (1989) Fundamentals of human heat stress. In: Burrows J, Hemp R, Holding W, Stroh RM (eds) Environmental engineering in South African mines. Mine Ventilation Society of South Africa, Marshalltown, pp 495–533

    Google Scholar 

  • Strydom NB, Wyndham CH (1963) Natural state of heat acclimatization of different ethnic groups. Fed Proc 22:801–809

    CAS  Google Scholar 

  • Taylor NAS (2006) Challenges to temperature regulation when working in hot environments. Ind Health 44:331–344

    Article  Google Scholar 

  • Terjung WH, Louie SSF (1971) Potential solar radiation climates of man. Ann Assoc Am Geogr 61:481–500

    Article  Google Scholar 

  • Virtual Naval Hospital (2002) Manual of Naval Preventive Medicine: Chapter 3 (3–12)—Assessment of Heat Stress. http://www.vnh.org/

  • Weisskopf MG, Anderson HA, Foldy S, Hanrahan LP, Blair K, Torok TJ, Rumm PD (2002) Heat wave morbidity and mortality, Milwaukee, Wis, 1999 vs 1995: an improved response? Am J Public Health 92:830–833

    Article  Google Scholar 

  • Western Power (2007) Perth residents embrace air conditioning trial. http://www.westernpower.com.au/subContent/aboutUs/mediaCentre/mediaReleases/2007/Perth_residents_embrace_air_conditioning_trialhtml, Perth

  • Winslow CEA (1916) The kata thermometer as a measure of the effect of atmospheric conditions upon bodily comfort. Science 43:716–719

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to John Relf from the Perth office of the Australian Meteorological Bureau for providing us with the historical weather data. Two anonymous referees made suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane K. Maloney.

Appendix 1—the algorithms used in heat balance calculations

Appendix 1—the algorithms used in heat balance calculations

The data from the Bureau of Meteorology were the average every 3 h from January 1990 to December 2001, for:

Ta

= dry bulb temperature

°C

RH

= relative humidity

%

Vkmh

= wind speed from historical records

km h−1

V

= wind speed converted to m s−1

m s−1

= Vkmh / 3.6

Some of the terms are common to both the Kata model and MANMO. These terms are:

Mb

= body mass

kg

H

= height

cm

SAb

= body surface area

m2

\( = 0.007184 * \left( {{\hbox{M}}_{\rm{b}}^{0.425}} \right) * \left( {{{\hbox{H}}^{0.725}}} \right) \)

MR

= metabolic rate per unit surface area

W m−2

MRb

= metabolic rate of a body

W

= MR × SAb

MHP

= metabolic heat production

W m−2

assumed to be 80% of the metabolic rate when work is performed (20% efficiency), and 100% of the metabolic rate when at rest (0% efficiency)

MHL

= metabolic heat load on the body

W

= MHP × SAb

SRmax

= maximum sweat rate

g min−1 m−2

SRb

= maximum sweat rate from a body

g min−1

= SRmax * SAb

ESR max

= maximum evaporation rate due to sweating from a body (supply side)

W

\( \left( {{\hbox{S}}{{\hbox{R}}_{\rm{b}}} * 2400\;{\hbox{j}}\;{{\hbox{g}}^{ - 1}}/60} \right) * {\hbox{Ef}}{{\hbox{f}}_{{\rm{evap}},}} \)

where Effevap is the efficiency of evaporation and was assumed to be 85% (see text)

RADinc

= total incident radiation load

W

see text and Table 1, adjusted by a scaling factor if the individual’s SA is not 1.81 m2

Terms used in MANMO;

Tskin

= skin temperature ( assumed to be 36°C )

°C

Tclo

= surface temperature of clothing exposed to the sun

°C

\( = {{\hbox{T}}_{\rm{a}}} - 21.9 + {{\hbox{T}}_{\rm{skin}}} \)

Albsk

= albedo of the skin ( assumed to be 0.3 )

 

Albclo

= albedo of the clothing ( assumed to be 0.3 )

 

Pclo

= proportion of the body clothed ( assumed to be 0.4 )

 

hc

= convective heat loss co-efficient

W m−2 °C−1

\( \begin{array}{*{20}{c}} {{\hbox{if}}\;{\hbox{V}} < 0.5; = \left[ {2.3 + 5.6 * {{\hbox{V}}^{0.67}}} \right] * 1.16} \hfill \\{{\hbox{if}}\;0.5 < {\hbox{V}} < 2; = 6.56 * {{\hbox{V}}^{0.618}} * 1.16} \hfill \\{{\hbox{if}}\;2 < {\hbox{V}} < 4; = 5.83 * {{\hbox{V}}^{0.805}} * 1.16} \hfill \\{{\hbox{if}}\,{\hbox{V}} > 4; = 5.38 * {{\hbox{V}}^{0.9}} * 1.16} \hfill \\\end{array} \)

where 1.16 is a scaling factor to convert kcal m−2 h−1 °C−1 to W m−2 °C−1

Fcl

= clothing factor that increases the resistance to heat loss across clothed surfaces

 

\( = 0.577 - 0.0886 * {\hbox{V}} + 0.00516 * {{\hbox{V}}^2} \)

Fpcl

= factor that adjusts evaporation rate for the clothing permeation to water vapour

 

\( = 0.858 - 0.246 * {\hbox{V}} + 0.0372 * {{\hbox{V}}^2} - 0.0019 * {{\hbox{V}}^3} \)

RADabs

= absorbed radiant heat load

W

\( = \left[ {{\hbox{RA}}{{\hbox{D}}_{\rm{inc}}} * \left( {1 - {\hbox{Al}}{{\hbox{b}}_{\rm{sk}}}} \right) * \left( {1 - {{\hbox{P}}_{\rm{clo}}}} \right)} \right] + \left[ {\left( {{\hbox{RA}}{{\hbox{D}}_{\rm{inc}}} * \left( {1 - {\hbox{Al}}{{\hbox{b}}_{\rm{clo}}}} \right) * {{\hbox{P}}_{\rm{clo}}} * 1.08} \right) - \left( {{{\hbox{h}}_{\rm{c}}} * \left( {{{\hbox{T}}_{\rm{clo}}} - {{\hbox{T}}_{\rm{a}}}} \right) * 1.08 * \left( {{{\hbox{P}}_{\rm{clo}}} * {\hbox{S}}{{\hbox{A}}_{\rm{b}}}} \right)} \right.} \right] \)

where 1.08 is a scaling factor that increases the surface area of clothed surfaces by 8% relative to the underlying skin. The final term subtracts the component of radiant heat load that is incident on the clothing and is lost directly by convection.

Occasionally at high wind speed the solution of this term was negative, in which case the term was resolved to the radiant heat load on the skin only = \( \left[ {{\hbox{RA}}{{\hbox{D}}_{\rm{inc}}} * \left( {1 - {\hbox{Al}}{{\hbox{b}}_{\rm{sk}}}} \right) * \left( {1 - {{\hbox{P}}_{\rm{clo}}}} \right)} \right] \)

HLtot

= total heat load

W

= MHL + RADabs

Cr

= respiratory convective heat exchange

W

\( = 0.001173 * \left( {37 - {{\hbox{T}}_{\rm{a}}}} \right) * {\hbox{M}}{{\hbox{R}}_{\rm{b}}} \)

Cclo

= convective heat exchange across clothed surfaces

W

\( = {{\hbox{h}}_{\rm{c}}} * \left( {{{\hbox{T}}_{\rm{sk}}} - {{\hbox{T}}_{\rm{a}}}} \right) * {{\hbox{F}}_{\rm{cl}}} * \left( {{{\hbox{P}}_{\rm{clo}}} * {\hbox{S}}{{\hbox{A}}_{\rm{b}}}} \right) * 1.08 \)

Cunclo

= convective heat exchange across unclothed surfaces

W

\( = {{\hbox{h}}_{\rm{c}}} * \left( {{{\hbox{T}}_{\rm{sk}}} - {{\hbox{T}}_{\rm{a}}}} \right) * \left( {1 - {{\hbox{P}}_{\rm{clo}}}} \right) * {\hbox{S}}{{\hbox{A}}_{\rm{b}}} \)

Ctot

= total convective heat exchange

W

\( = {{\hbox{C}}_{\rm{r}}} + {{\hbox{C}}_{\rm{clo}}} + {{\hbox{C}}_{\rm{unclo}}} \)

IR

= infra-red radiant heat loss

W

\( = - 1 * \left\{ {\left[ {\sigma * {{\left( {{{\hbox{T}}_{\rm{a}}} + 273.16} \right)}^4}} \right] - \left[ {\sigma * {{\left( {{{\hbox{T}}_{\rm{clo}}} + 273.16} \right)}^4} * {{\hbox{P}}_{\rm{clo}}}} \right] - \left[ {\sigma * {{\left( {{{\hbox{T}}_{\rm{sk}}} + 273.16} \right)}^4} * \left( {1 - {{\hbox{P}}_{\rm{clo}}}} \right)} \right]} \right\} * \left( {{\hbox{S}}{{\hbox{A}}_{\rm{b}}} * 0.725} \right) \)

where σ is the Stefan Boltzmann constant, and 0.725 reduces the total body surface area to the area involved in radiant heat exchange

Er

= respiratory evaporative heat loss

W

\( = {\hbox{M}}{{\hbox{R}}_{\rm{b}}} * 0.0023 * \left[ {44 - \left( {{\hbox{RH/100}}} \right) * \left( {1.372 + 0.851 * {{\hbox{T}}_{\rm{a}}} - 0.0161 * {\hbox{T}}_{\rm{a}}^2 + 0.00071 * {\hbox{T}}_{\rm{a}}^3} \right)} \right] \)

Eunclo

= evaporative heat loss from unclothed surfaces

W

\( = \left\{ {2.2 * {{\hbox{h}}_{\rm{c}}} * \left[ {\left( {1.91 * {{\hbox{T}}_{{\rm{sk}}}} - 25.33} \right) - \left( {{\hbox{RH/100}}} \right) * \left( {1.372 + 0.851 * {{\hbox{T}}_{\rm{a}}} - 0.0161 * {\hbox{T}}_{\rm{a}}^2 + 0.00071 * {\hbox{T}}_{\rm{a}}^3} \right)} \right]} \right\} * \left[ {{\hbox{S}}{{\hbox{A}}_{\rm{b}}} * \left( {1 - {{\hbox{P}}_{{\rm{clo}}}}} \right)} \right] \)

where 2.2 is a factor to convert the convective heat exchange coefficient to an evaporative heat exchange coefficient

Eclo

= evaporative heat loss from clothed surfaces

W

\( = \left\{ {2.2 * {{\hbox{h}}_{\rm{c}}} * \left[ {\left( {1.91 * {{\hbox{T}}_{{\rm{sk}}}} - 25.33} \right) - \left( {{\hbox{RH/100}}} \right) * \left( {1.372 + 0.851 * {{\hbox{T}}_{\rm{a}}} - 0.0161 * {\hbox{T}}_{\rm{a}}^2 + 0.00071 * {\hbox{T}}_{\rm{a}}^3} \right)} \right]} \right\} * \left[ {\left. {{\hbox{S}}{{\hbox{A}}_{\rm{b}}} * {{\hbox{P}}_{{\rm{clo}}}}} \right)} \right] * {{\hbox{F}}_{{\rm{pcl}}}} \)

Esk max

= maximum evaporation from the skin surface

W

\( = {\hbox{the}}\;{\hbox{lesser}}\;{\hbox{of}}\;\left( {{{\hbox{E}}_{\rm{clo}}} + {{\hbox{E}}_{\rm{unclo}}}} \right){\hbox{OR}}\left( {{{\hbox{E}}_{{\rm{SR}}\,\max }}} \right) \)

Etot

= total evaporative heat loss from the body

W

= Esk max + Er

Hs

= heat storage

W

\( = {\hbox{H}}{{\hbox{L}}_{\rm{tot}}} - {{\hbox{C}}_{\rm{tot}}} - {\hbox{IR}} - {{\hbox{E}}_{\rm{tot}}} \)

if Hs is positive then hyperthermia will develop

 

sweating is required for heat balance if \( {\hbox{H}}{{\hbox{L}}_{\rm{tot}}} > {{\hbox{C}}_{\rm{tot}}} + {\hbox{IR}} + {{\hbox{E}}_{\rm{r}}} \)

 

 

 

A dangerous day is defined when Hs > 1.2153 × Mb

 

Terms used in the Kata model;

Tn

= natural wet-bulb temperature

°C

\( = 0.85 * {{\hbox{T}}_{\rm{a}}} + 0.17 * {\hbox{RH}} - 0.61\,{\hbox{x}}\,{{\hbox{V}}^{0.5}} + 0.0016 * {\hbox{S}} - 11.62 \)

where S is direct solar radiation and was assumed to vary sinusoidally from 960 W m−2 at the summer solstice to 500 W m−2 at the winter solstice. Errors induced if S varies from the predicted value are minor.

DKCPa

= dry kata cooling / warming power per unit area;

W m−2

\( \begin{array}{*{20}{c}} {{\hbox{if}}\,{\hbox{V}} = 0; = 0.27 * {{\left( {36.5 - {{\hbox{T}}_{\rm{a}}}} \right)}^{1.06}} * 41.84} \hfill \\{{\hbox{if}}\,0 < {\hbox{V}} > 1; = 0.2 + 0.4 * {{\hbox{V}}^{0.5}} * \left( {36.5 - {{\hbox{T}}_{\rm{a}}}} \right) * 41.84} \hfill \\{{\hbox{if}}\,{\hbox{V}} > 1; = 0.13 + 0.47 * {{\hbox{V}}^{0.5}} * \left( {36.5 - {{\hbox{T}}_{\rm{a}}}} \right) * 41.84} \hfill \\\end{array} \)

where 41.84 is a scaling factor to convert mcal cm−2 sec−1 to W m−2

DKCPb

= dry kata cooling / warming power from a body, adjusted by a 30% clothing factor

W

\( = {\hbox{DKC}}{{\hbox{P}}_{\rm{a}}} * {\hbox{S}}{{\hbox{A}}_{\rm{b}}} * 0.7 \)

WKCPa

= wet kata cooling / warming power per unit area;

W m-2

\( = \left[ {0.648 * \left( {36.4 - {{\hbox{T}}_{\rm{n}}}} \right) + 0.833 * \left( {36.4 - {{\hbox{T}}_{\rm{n}}}} \right) * {{\hbox{V}}^{0.5}}} \right] * 41.84 \)

WKCPb

= wet kata cooling / warming power from a body, adjusted by a 30% clothing factor

W

\( = {\hbox{WKC}}{{\hbox{P}}_{\rm{a}}} * {\hbox{S}}{{\hbox{A}}_{\rm{b}}} * 0.7 \)

RADabs

= same as MANMO

 

HLtot

= same as MANMO

W

Cr

= same as MANMO

W

Er

= same as MANMO

W

HLCmax

= maximum heat loss capacity

 

\( = {\hbox{the}}\,{\hbox{lesser}}\,{\hbox{of}}\,\left( {{\hbox{DKC}}{{\hbox{P}}_{\rm{b}}} + {{\hbox{E}}_{{\rm{SR}}\,\max }} + {{\hbox{C}}_{\rm{r}}} + {{\hbox{E}}_{\rm{r}}}} \right){\hbox{OR}}\left( {{\hbox{WKC}}{{\hbox{P}}_{\rm{b}}} + {{\hbox{C}}_{\rm{r}}} + {{\hbox{E}}_{\rm{r}}}} \right) \)

Hs

= heat storage

 

= HLtot – HLCmax

if Hs is positive then hyperthermia will develop

 

sweating is required for heat balance if HLtot > DKCPb

 

 

 

A dangerous day is defined when Hs > 1.2153 × Mb

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloney, S.K., Forbes, C.F. What effect will a few degrees of climate change have on human heat balance? Implications for human activity. Int J Biometeorol 55, 147–160 (2011). https://doi.org/10.1007/s00484-010-0320-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-010-0320-6

Keywords

Navigation