Skip to main content
Log in

Role of afferent pathways of heat and cold in body temperature regulation

  • Review Article
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The detection of surface and internal temperatures is achieved by axons terminating at lamina I of the spinal dorsal horn, otherwise approached only by nociceptive afferents. Recent advances in thermal physiology research have disclosed that temperature-sensitive ion channels belonging to the “transient receptor potential” family exist in the peripheral sensory neurons and in the brain. Thermosensory, nociceptive and polymodal afferents project to different thalamic nuclei, and specific pathways to the insular cortex evoke the conscious experience of thermal sensation. The posterior insular region represents discriminative thermal sensation, while the largest correlation with subjective ratings of temperature is located in the orbitofrontal and anterior insular cortex. The insular cortex forms an integrative part of the limbic system and is closely tied with the hypothalamus, the amygdala, the anterior cingulate cortex and the orbitofrontal cortex and emerges as the main coordinator of behavioral, autonomic and endocrine responses to both non-noxious and noxious thermal stimuli. The firing rate of warm and cold receptors is not altered by pyrogens. A strong correlation between the onset of fever and production of superoxide by macrophages following the injection of pyrogens implicates reactive oxygen species as elicitors of fever, a hypothesis strengthened by the observation that oxygen radical scavengers or thiol reductants act as antipyretics. Oxidative stress appears to be sensed by the brain and a likely structure for its detection may be the redox-sensitive site of the N-methyl-d-aspartate (NMDA) receptor for glutamate, in that oxidation of this site causes fever while its reduction lowers body temperature, effects which are abrogated by specific NMDA receptor blockers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adachi A, Niijima A (1982) Thermosensitive afferent fibers in the hepatic branch of the vagus nerve in the guinea pig. J Auton Nerv Syst 5:101–109

    Article  CAS  PubMed  Google Scholar 

  • Adelson DW, Wie JY, Kruger L (1997) Warm-sensitive afferent splanchnic C-fiber units in vitro. J Neurophysiol 77:2989–3002

    CAS  PubMed  Google Scholar 

  • Aimar P, Pasti L, Carmignoto G, Merighi A (1998) Nitric oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelatinosa. J Neurosci 18:10375–10388

    CAS  PubMed  Google Scholar 

  • Airoldi M, Gabriele P, Brossa PC, Pedani F, Tseroni V, D’Alberto M, Ragona R (1990) Serum thyroid hormone changes in head and neck cancer patients treated with microwave hyperthermia on lymph node metastasis. Cancer 65:901–907

    CAS  PubMed  Google Scholar 

  • Aizenman E, Lipton SA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Albe-Fessard D, Boivie J, Grant G, Levante A (1975) Labelling of cells in the medulla oblongata of the monkey after injections of horseradish peroxidase in the thalamus. Neurosci Lett 1:75–80

    Article  Google Scholar 

  • Amit Z, Galina ZH (1986) Stress-induced analgesia: adaptive pain suppression. Physiol Rev 66:1091–1120

    CAS  PubMed  Google Scholar 

  • Antoni FA (1986) Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev 7:351–378

    CAS  PubMed  Google Scholar 

  • Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244

    Article  CAS  PubMed  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1467

    CAS  PubMed  Google Scholar 

  • Bandler R, Carrive P (1988) Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res 439:95–106

    Article  CAS  PubMed  Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17:379–389

    Article  CAS  PubMed  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Caroff S, Winokur A, Koenig R (1987) Neuroendocrine responses to cold stress in normal subjects and depressives. Psychoneuroendocrinology 12:483–490

    Article  CAS  PubMed  Google Scholar 

  • Benrath J, Gillardon F, Zimmermann M (2001) Differential time courses of skin blood flow and hyperalgesia in the human sunburn reaction following ultraviolet irradiation of the skin. Eur J Pain 5:155–167

    Article  CAS  PubMed  Google Scholar 

  • Bernard C (1860) Lecons sur la physiologie et la pathologie du systeme nerveux. Med Times Gaz 1:1–30

    Google Scholar 

  • Berner NJ, Heller HC (1998) Does the preoptic anterior hypothalamus receive thermoafferent information? Am J Physiol 274:R9–R18

    CAS  PubMed  Google Scholar 

  • Besedovsky H, Sorkin E, Keller M, Müller J (1975) Changes in blood hormone levels during the immune response. Proc Soc Exp Biol Med 150:466–470

    CAS  PubMed  Google Scholar 

  • Besedovsky H, Del Rey A, Sorkin E, Dinarello CA (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233:652–654

    CAS  PubMed  Google Scholar 

  • Bini G, Cruccu G, Hagbarth KE, Schady W, Torebjork E (1984) Analgesic effect of vibration and cooling on pain induced by intraneural electrical stimulation. Pain 18:239–248

    Article  CAS  PubMed  Google Scholar 

  • Black PH (1994) Central nervous system-immune system interactions: psychoneuroendocrinology of stress and its immune consequences. Antimicrob Agents Chemother 38:1–6

    CAS  PubMed  Google Scholar 

  • Bois-Reymond E du (1886) Ueber die Grenzen des Naturerkennens. Vol 1. von Veit, Leipzig, pp 105–140

    Google Scholar 

  • Boivie J, Leijon G (1991) Clinical findings in patients with central poststroke pain. In: Casey KL (ed) Pain and central nervous system disease: the central pain syndromes. Raven, New York, pp 65–76

    Google Scholar 

  • Bolles RC, Fanselow MS (1980) A perceptual-defensive-recuperative model of fear and pain. Behav Brain Sci 3:291–301

    Google Scholar 

  • Bowsher D (1957) Termination of the central pain pathway in man: the conscious appreciation of pain. Brain 80:606–622

    CAS  PubMed  Google Scholar 

  • Boxall SJ, Berthele A, Laurie DJ, Sommer B, Zieglgänsberger W, Urban L, Tölle TR (1998) Enhanced expression of metabotropic glutamate receptor 3 messenger RNA in the rat spinal cord during ultraviolet irradiation induced peripheral inflammation. Neuroscience 82:591–602

    Article  CAS  PubMed  Google Scholar 

  • Brandenberger G, Follenius M, Oyono Enguelle S (1979) Responses of anterior pituitary hormones to heat exposure. J Endocrinol Invest 2:297–298

    CAS  PubMed  Google Scholar 

  • Brenman JE, Bredt DS (1997) Synaptic signaling by nitric oxide. Curr Opin Neurobiol 7:374–378

    Article  CAS  PubMed  Google Scholar 

  • Briese E (1992) Cold increases and warmth diminishes stress-induced rise of colonic temperature in rats. Physiol Behav 51:881–883

    Article  CAS  PubMed  Google Scholar 

  • Brisson GR, Párronet F, Perrault H, Boisvert P, Massicotte D, Gareau R (1991) Prolactinotrophic effect of endogenous and exogenous heat loads in human male adults. J Appl Physiol 70:1351–1355

    CAS  PubMed  Google Scholar 

  • Brooks VB (1983) Study of brain function by local, reversible cooling. Rev Physiol Biochem Pharmacol 95:1–109

    Google Scholar 

  • Brück K (1978) Heat production and temperature regulation. In: Stave U (ed) Perinatal physiology. Plenum, New York, pp 455–498

    Google Scholar 

  • Brück K (1988) Physiologische Grundlagen der Kälteabwehrreaktion des Menschen. Z Phys Med Baln Med Klim 17:183–195

    Google Scholar 

  • Brückle W, Lautenschläger J (1995) Treatment of fibromyalgia syndrome. Akt Rheumatol 20:13–19

    Google Scholar 

  • Bushnell MC, Duncan GH (1989) Sensory and affective aspects of pain perception: is medial thalamus restricted to emotional issues. Exp Brain Res 78:415–418

    CAS  PubMed  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110

    Article  CAS  PubMed  Google Scholar 

  • Canini F, Bréjot T, D’Aléo P, Mercier S, Bourdon L (2001) NMDA receptors are involved in dithiothreitol-induced hypothermia. Eur J Pharmacol 426:179–183

    Article  CAS  PubMed  Google Scholar 

  • Casey KL (1999) Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci USA 96:7668–7674

    Article  CAS  PubMed  Google Scholar 

  • Casey KL, Minoshima S (1995) The forebrain network for pain: an emerging image. In: Besson JM, Guilbaud G, Ollat H (eds) Forebrain areas involved in pain processing. Libbey Eurotext, Paris

    Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:847–517

    Article  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. J Am Med Assoc 267:1244–1252

    Article  CAS  Google Scholar 

  • Collins KJ, Few JD (1979) Secretion and metabolism of cortisol and aldosterone during controlled hyperthermia. J Physiol (Lond) 292:1–14

    CAS  Google Scholar 

  • Conklin P, Heggeness FW (1971) Maturation of temperature homeostasis in the rat. Am J Physiol 220:333–336

    CAS  PubMed  Google Scholar 

  • Conrad A, Bull D, King M, Husband AJ (1997) The effects of lipopolysaccharide (LPS) on the fever response in rats at different ambient temperatures. Physiol Behav 62:1197–1201

    Article  CAS  PubMed  Google Scholar 

  • Cooper KE (1995) Fever and antipyresis. The role of the nervous system. Cambridge University, Cambridge

    Google Scholar 

  • Cordis GA, Maulik G, Bagchi D, Riedel W, Das DK (1998) Detection of oxidative DNA damage to ischemic reperfused rat hearts by 8-hydroxydeoxyguanosine formation. J Mol Cell Cardiol 30:1939–1944

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (1998) A new version of the thalamic disinhibition hypothesis of central pain. Pain Forum 7:1–14

    Google Scholar 

  • Craig AD, Dostrovsky JO (2001) Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. J Neurophysiol 86:856–870

    CAS  PubMed  Google Scholar 

  • Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Article  CAS  PubMed  Google Scholar 

  • Craig AD, Reiman EM, Evans A, Bushnell MC (1996) Functional imaging of an illusion of pain. Nature 384:258–260

    Article  CAS  PubMed  Google Scholar 

  • Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    Article  CAS  PubMed  Google Scholar 

  • Dale HH (1935) Pharmacology and nerve endings. Proc Roy Soc Med 28:319–332

    CAS  Google Scholar 

  • Darian-Smith I (1984) Thermal sensibility. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology, section 1. The nervous system, vol III. American Physiological Society, Bethesda, pp 879–913

    Google Scholar 

  • Dascombe MJ (1985) The pharmacology of fever. Prog Neurobiol 25:327–373

    Article  CAS  PubMed  Google Scholar 

  • Davis KD, Taylor SJ, Crawley AP, Wood ML, Mikulis DJ (1997) Functional MRI of pain and attention related activations in the human cingulate cortex. J Neurophysiol 77:3370–3380

    CAS  PubMed  Google Scholar 

  • Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:1533–1546

    CAS  PubMed  Google Scholar 

  • Davis KD, Lozano AM, Manduch M, Tasker RR, Kiss ZHT, Dostrovsky JO (1999) Thalamic relay site for cold perception in humans. J Neurophysiol 81:1970–1973

    CAS  PubMed  Google Scholar 

  • Defrin R, Ohry A, Blumen N, Urca G (2002) Sensory determinants of thermal pain. Brain 125:501–510

    Article  PubMed  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306

    PubMed  Google Scholar 

  • Dodt E, Zotterman Y (1952) The discharge of specific cold fibers at high temperatures (the paradoxical cold). Acta Physiol Scand 26:358–365

    CAS  PubMed  Google Scholar 

  • Downing JF, Taylor MW (1987) The effect of in vivo hyperthermia on selected lymphokines in man. Lymphokine Res 6:103–109

    CAS  PubMed  Google Scholar 

  • Dray A, Perkins M (1993) Bradykinin and inflammatory pain. Trends Neurosci 16:99–104

    Article  CAS  PubMed  Google Scholar 

  • Dunn AJ, Berridge CW (1990) Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev 15:71–100

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Evans MH, Frens J, Bligh J (1972) Unaltered activity of tongue temperature sensors after administration of pyrogen to rabbits. Eur J Pharmacol 18:333–337

    Article  CAS  PubMed  Google Scholar 

  • Fanselow MS (1991) Antinociception as a response to aversive Pavlovian conditional stimuli: cognitive and emotional mediators. In: Denny MR (ed) Fear, avoidance, and phobias: a fundamental analysis. Lawrence Erlbaum, Hillsdale, pp 61–86

    Google Scholar 

  • Fields HL, Basbaum AI (1994) Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill-Livingstone, Edinburgh

    Google Scholar 

  • Folk GE (1974) Textbook of environmental physiology. Lea and Febiger, Philadelphia, pp 9–15

    Google Scholar 

  • Fox RH, McPherson RK (1954) The regulation of body temperature during fever. J Physiol (Lond) 125:21

    CAS  Google Scholar 

  • Francesconi RP, Szlyk PC, Sils IV, Leva N, Hubbard RW (1989) Plasma renin activity and aldosterone: correlations with moderate hypohydration. Aviat Space Environ Med 60:1172–1177

    CAS  PubMed  Google Scholar 

  • Franci O, Amici A, Margarit R, Merendino N, Piccolella E (1996) Influence of thermal and dietary stress on immune response of rabbits. J Anim Sci 74:1523–1529

    CAS  PubMed  Google Scholar 

  • Fricke R (1994) Lokale Kryotherapie und Ganzkörperkältetherapie bei −110°C. Klima Luft Kältetechnik 3:131–135

    Google Scholar 

  • Fricke R (1999) Was leistet die Kältetherapie bei rheumatischen Erkrankungen? Rheuma J 1:28–29

    Google Scholar 

  • Fricke L, Fricke R, Wiegelmann W (1988) Beeinflussung hormoneller Reaktionen durch Ganzkörperkältetherapie. Z Phys Med Baln Med Klim 17:363–364

    Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    CAS  PubMed  Google Scholar 

  • Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194

    CAS  PubMed  Google Scholar 

  • Gelineo S (1964) Organ systems in adaptation: the temperature regulating system. In: Dill DB, Adolph EF, Wilber CG (eds) Handbook of physiology, section 4. Adaptation to the environment. American Physiological Society, Washington, DC, pp 259–282

    Google Scholar 

  • Gerra G, Volpi R, Delsignore R, Maninetti L, Caccavari R, Vourna S, Maestri D, Chiodera P, Ugolotti G, Coiro V (1992) Sex-related responses of beta-endorphin, ACTH, GH and PRL to cold exposure in humans. Acta Endocrinol 126:24–28

    CAS  PubMed  Google Scholar 

  • Gilbert HF (1995) Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol 251:8–28

    Article  CAS  PubMed  Google Scholar 

  • Giusti P, Cima L, Tinello A, Cozzi F, Targa L, Lazzarin P, Todesco S (1990) Stress hormones liberated by fangotherapy. ACTH and beta-endorphin levels under heat stress. Fortschr Med 108:601–603

    CAS  PubMed  Google Scholar 

  • Grayson J (1949) Vascular reactions in the human intestine. J Physiol (Lond) 109:439–447

    Google Scholar 

  • Gregor M, Jänig W, Riedel W (1976) Response pattern of cutaneous postganglionic neurones to the hindlimb on spinal cord heating and cooling in the cat. Pflugers Arch 363:135–140

    CAS  PubMed  Google Scholar 

  • Grisham MB, Everse J, Janssen HF (1988) Endotoxemia and neutrophil activation in vivo. Am J Physiol 254:H1017–H1022

    CAS  PubMed  Google Scholar 

  • Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRP4V. J Neurosci 22:6408–6414

    PubMed  Google Scholar 

  • Haefeli WE, Bargetzi MJ, Starnes HF, Blaschke TF, Hoffman BB (1993) Evidence for activation of the sympathetic nervous system by recombinant human interleukin-1 beta in humans. J Immunother 13:136–140

    CAS  PubMed  Google Scholar 

  • Hales JRS, Rowell LB, King RB (1979) Regional distribution of blood flow in awake heat-stressed baboons. Am J Physiol 237:H705–H712

    CAS  PubMed  Google Scholar 

  • Han D, Sen CK, Roy S, Kobayashi MS, Tritschler HJ, Packer L (1997) Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants. Am J Physiol 273:R1771–R1778

    CAS  PubMed  Google Scholar 

  • Han ZS, Zhang ET, Craig AD (1998) Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nat Neurosci 1:218–225

    Article  CAS  PubMed  Google Scholar 

  • Hardy JD (1976) Fever and thermogenesis. Isr J Med Sci 12:942–950

    CAS  PubMed  Google Scholar 

  • Harris JA (1996) Descending antinociceptive mechanisms in the brainstem: their role in the animal’s defensive system. J Physiol (Paris) 90:15–25

    Article  CAS  Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    Google Scholar 

  • Heideman M, Bengtsson A (1992) The immunologic response to thermal injury. World J Surg 16:53–56

    CAS  PubMed  Google Scholar 

  • Hensel H (1973) Neural processes in thermoregulation. Physiol Rev 53:948–1017

    Google Scholar 

  • Hensel H, Zotterman Y (1951) The effect of menthol on the thermoreceptors. Acta Physiol Scand 24:27–34

    CAS  PubMed  Google Scholar 

  • Holstege G, Bandler R, Saper CB (1996) The emotional motor system. Elsevier, Amsterdam

    Google Scholar 

  • Hubel DH, Wiesel TN (1963) Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J Neurophysiol 26:994–1002

    CAS  PubMed  Google Scholar 

  • Iriki M (1988) Fever and fever syndrome—current problems. Jpn J Physiol 38:233–250

    CAS  PubMed  Google Scholar 

  • Iriki M, Saigusa T (1998) Regional differentiation of sympathetic efferents during fever. Prog Brain Res 115:477–497

    CAS  PubMed  Google Scholar 

  • Iriki M, Riedel W, Simon E (1971) Regional differentiation of sympathetic activity during hypothalamic heating and cooling in anaesthetized rabbits. Pflugers Arch 328:320–331

    CAS  PubMed  Google Scholar 

  • Jacobs I, Romet T, Frim J, Hynes A (1984) Effects of endurance fitness on responses to cold water immersion. Aviat Space Environ Med 55:715–720

    CAS  PubMed  Google Scholar 

  • Jansky L, Pospisilova D, Honzova S, Ulicny B, Sramek P, Zeman V, Kaminkova J (1996) Immune system of cold-exposed and cold-adapted humans. Eur J Appl Physiol Occup Physiol 72:445–450

    CAS  PubMed  Google Scholar 

  • Jessen C (2001) Temperature regulation in humans and other mammals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Johnson JM, Proppe DW (1996) Cardiovascular adjustments to heat stress. In: Fregly MJ, Blatteis CM (eds) APS handbook of physiology section 4. Environmental physiology, I. Oxford University, Oxford, pp 215–243

    Google Scholar 

  • Johnson JM, Pergola PE, Liao FK, Kellogg DL, Crandall CG (1995) Skin of the dorsal aspect of human hands and fingers possesses an active vasodilator system. J Appl Physiol 78:948–954

    CAS  PubMed  Google Scholar 

  • Joyner MJ, Halliwill JR (2000) Sympathetic vasodilatation in human limbs. J Physiol (Lond) 526:471–480

    CAS  Google Scholar 

  • Kaizuka Y, Mori T, Hori T (1990) Effects of temperature on the cytotoxic activity of natural killer cells in the rat spleen. Jpn J Physiol 40:S227

    Google Scholar 

  • Kanosue K, Nakayama T, Ishikawa Y, Hosono T, Kaminaga T, Shosaku A (1985) Responses of thalamic and hypothalamic neurons to scrotal warming in rats are non-specific responses. Brain Res 328:207–214

    Article  CAS  PubMed  Google Scholar 

  • Kanosue K, Yanase-Fujiwara M, Tanaka H (1992) Involvement of fever mechanism in exercise-induced hyperthermia. Bull Phys Fitness Res Inst 80:40–46

    Google Scholar 

  • Kanosue K, Sadato N, Okada T, Yoda T, Nakai S, Yoshida K, Hosono T, Nagashima K, Yagashita T, Inoue O, Kobayashi K, Yonekura Y (2002) Brain activation during whole body cooling in humans studied with functional magnetic resonance imaging. Neurosci Lett 329:157–160

    Article  CAS  PubMed  Google Scholar 

  • Kaplanski J, Magazanik A, Hadas I, Sod-Moriah U, Fraifeld V (2000) Effects of lipopolysaccharide on body temperature and plasma zinc and iron concentrations in rats exposed to different ambient temperatures. J Thermal Biol 25:35–38

    Article  CAS  Google Scholar 

  • Karlsson A, Dahlgren C (2002) Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antiox Redox Signaling 4:49–60

    Article  CAS  PubMed  Google Scholar 

  • Keaney JF, Puyana JC, Francis S, Loscalzo JF, Stamler JS, Loscalzo J (1994) Methylene blue reverses endotoxin-induced hypotension. Circ Res 74:1121–1125

    CAS  PubMed  Google Scholar 

  • Keil R, Riedel W, Simon E (1994) Thyroid status modulates hypothalamic thermosensitivity, vasopressin and corticoid secretion in rabbits. In: Milton AS (ed) Temperature regulation, advances in pharmacological sciences. Birkhäuser, Basel, pp 321–326

    Google Scholar 

  • Keil R, Riedel W, Simon E (1996) Hormonal secretion patterns but not autonomic effector responses elicited by hypothalamic heating and cooling are altered in febrile rabbits. J Auton Nerv Syst 57:193–201

    Article  CAS  PubMed  Google Scholar 

  • Kelner MJ, Bagnell R, Hale B, Alexander NM (1988) Potential of methylene blue to block oxygen radical generation in reperfusion injury. Basic Life Sci 49:895–898

    CAS  PubMed  Google Scholar 

  • Khasar SG, Ouseph AK, Choub B, Ho T, Green PG, Levine JD (1995) Is there more than one prostaglandin E receptor subtype mediating hyperalgesia in the rat hindaw. Neuroscience 64:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Kluger MJ (1979) Phylogeny of fever. Fed Proc 38:30–34

    CAS  PubMed  Google Scholar 

  • Kluger MJ (1991) Fever: role of pyrogens and crygens. Physiol Rev 71:93–127

    CAS  PubMed  Google Scholar 

  • Konits PH, Hamilton BP, Pruce ES, Whitacre M, Van Echo DH (1984) Serum thyroid hormone changes during whole body hyperthermia. Cancer 54:2432–2435

    CAS  PubMed  Google Scholar 

  • Krout AD, Craig AD (2003) Differentiation of lamina I spinomedullary and spinothalamic neurons in the cat. J Comp Neurol 458:257–271

    Article  PubMed  Google Scholar 

  • Kukkonen-Harjula K, Kauppinen K (1988) How the sauna affects the endocrine system. Ann Clin Res 20:262–266

    CAS  PubMed  Google Scholar 

  • Kuntz A (1945) Anatomic and physiologic properties of cutaneo-visceral vasomotor reflex arcs. J Neurophysiol 8:421–429

    Google Scholar 

  • Laatikainen T, Salminen K, Kohvakka A, Pettersson J (1988) Response of plasma endorphins, prolactin and catecholamines in women to intense heat in a sauna. Eur J Appl Physiol Occup Physiol 57:98–102

    CAS  PubMed  Google Scholar 

  • Lang E, Novak A, Reeh PW, Handwerker HO (1990) Chemosensitivity of fine afferents from rat skin in vitro. J Neurophysiol 63:887–901

    CAS  PubMed  Google Scholar 

  • Lariviere WR, Melzack R (2000) The role of corticotropin-releasing factor in pain and analgesia. Pain 84:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HSV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  CAS  PubMed  Google Scholar 

  • Lüderitz O, Galanos C, Rietschel ET (1982) Endotoxins of gram-negative bacteria. Pharmacol Ther 15:383–402

    Article  Google Scholar 

  • Maier SF, Watkins LR (1998) Cytokines for psychologists—implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 105:83–107

    CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1970) The utility of superoxide dismutase in studying free radical reactions. J Biol Chem 242:1374–1377

    Google Scholar 

  • McMahon S, Lewin GR, Wall PD (1993) Central hyperexcitability triggered by noxious inputs. Curr Opin Neurobiol 3:602–610

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1995) Glutathione metabolism. Methods Enzymol 251:3–7

    Article  CAS  PubMed  Google Scholar 

  • Mendell LM, Wall PD (1965) Response of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature 206:97–99

    CAS  PubMed  Google Scholar 

  • Mense S, Meyer H (1988) Bradykinin-induced modulation of the response behaviour of different types of feline group II and IV muscle receptors. J Physiol (Lond) 398:49–63

    CAS  Google Scholar 

  • Mense S, Hoheisel U, Reinart A (1996) The possible role of substance P in eliciting and modulating deep somatic pain. Prog Brain Res 110:125–135

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1982) Insula of the old world monkey III: efferent cortical output and comments on function. J Comp Neurol 212:38–52

    CAS  PubMed  Google Scholar 

  • Metzger D, Zwingmann C, Protz W, Jackel WH (2000) Whole-body cryotherapy in rehabilitation of patients with rheumatoid diseases—a pilot study. Rehabilitation 39:93–100

    Article  CAS  PubMed  Google Scholar 

  • Michel H, Larrey D, Blanc P (1994) Hepato-digestive disorders in athletic practice. Presse Med 23:479–484

    CAS  PubMed  Google Scholar 

  • Miert AS van, van Duin CT, Wensing T (1992) Fever and acute phase response induced in dwarf goats by endotoxin and bovine and human recombinant tumour necrosis factor alpha. J Vet Pharmacol Ther 15:332–342

    PubMed  Google Scholar 

  • Milton AS, Wendlandt S (1971) Effects on body temperatures of prostaglandins of the A, E and F series on injection into the third ventricle of unanaesthetized cats and rabbits. J Physiol (Lond) 218:325–336

    CAS  Google Scholar 

  • Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472

    CAS  PubMed  Google Scholar 

  • Monda M, Pittman QJ (1993) Cortical spreading depression blocks prostaglandin E1 and endotoxin fever in rats. Am J Physiol 264:R456–R459

    CAS  PubMed  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    Article  CAS  PubMed  Google Scholar 

  • Montoya E, Seibel MJ, Wilber JF (1975) Thryrotropin-releasing hormone secretory physiology: studies by radioimmunoassay and affinity chromatography. Endocrinology 96:1413–1418

    CAS  PubMed  Google Scholar 

  • Mower GD (1976) Perceived intensity of peripheral thermal stimuli is independent of internal body temperature. J Comp Physiol Psychol 90:1152–1155

    CAS  PubMed  Google Scholar 

  • Müller U, Krieglstein J (1995) Prolonged treatment with α-lipoic acid protects cultures neurons against hypoxic, glutamate- or iron-induced injury. J Cereb Blood Flow Metabol 15:624–630

    Google Scholar 

  • Nagai M, Iriki M (2001) Changes in immune activities by heat stress. In: Kosaka M, Suguhara T, Schmidt KL, Simon E (eds) Thermotherapy for neoplasia, inflammation and pain. Springer, Tokyo, pp 266–270

    Google Scholar 

  • Nagai M, Wada M, Kobayashi Y, Togawa S (2003) Effects of lumbar skin warming on gastric motility and blood pressure in humans. Jpn J Physiol 53:45–51

    PubMed  Google Scholar 

  • Nakajima Y, Takamata A, Matsukawa T, Sessler DI, Kitamura Y, Ueno H, Tanaka Y, Mizobe T (2004) Effect of amino acid infusion on central thermoregulatory control in humans. Anesthesiology 100:634–639

    Google Scholar 

  • Nanneman D (1991) Thermal modalities: heat and cold. A review of physiologic effects with clinical applications. AAOHN J 39:70–75

    CAS  PubMed  Google Scholar 

  • Nijsten MW, Hack CE, Helle M, ten Duis HJ, Klasen HJ, Aarden LA (1991) Interleukin-6 and its relation to the humoral immune response and clinical parameters in burned patients. Surgery 109:761–767

    CAS  PubMed  Google Scholar 

  • Nomoto S (1996) Diurnal variations in fever induced by intravenous LPS injection in pigeons. Pflugers Arch 431:987–989

    Article  CAS  Google Scholar 

  • Nomoto S (1997) LPS fever in pigeons. Ann NY Acad Sci 813:508–511

    CAS  PubMed  Google Scholar 

  • Nomoto S (2003) Role of prostaglandin E2 and indomethacin in the febrile response of pigeons. Jpn J Physiol 53:253–258

    Article  CAS  PubMed  Google Scholar 

  • Nomoto S, Riedel W (2001) Prevention of fever by methylene blue in mammals and birds correlates with diminished oxidative stress. Pflugers Arch 441:R186

    Google Scholar 

  • Nomoto S, Riedel W (2004) Effects of methylene blue, and α-lipoic acid, on body temperature and fever in pigeons. J Thermal Biol (in press)

  • Norrsell U, Craig AD (1999) Behavioral thermosensitivity after lesions of thalamic target areas of a thermosensory spinothalamic pathway in the cat. J Neurophysiol 82:611–625

    CAS  PubMed  Google Scholar 

  • Oomura Y, Hori T (1998). Brain and biodefence. Karger, Tokyo

    Google Scholar 

  • Osgood PF, Carr DB, Kazianis A, Kemp JW, Atchison NE, Szyfelbein SK (1990) Antinociception in the rat induced by a cold environment. Brain Res 507:11–16

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250

    Article  CAS  PubMed  Google Scholar 

  • Pandolf KB, Gange RW, Latzka WA, Blank IH, Young AJ, Sawka MN (1992) Human thermoregulatory responses during cold water immersion after artificially induced sunburn. Am J Physiol 262:R617–R623

    CAS  PubMed  Google Scholar 

  • Panigrahi M, Sadguna Y, Shivakumar BR, Kolluri SVR, Roy S, Packer L, Ravindranath V (1996) α-Lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res 717:184–188

    Article  CAS  PubMed  Google Scholar 

  • Perl ER (1984) Pain and nociception. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology, section 1. The nervous system, vol III. American Physiological Society, Bethesda, pp 915–975

    Google Scholar 

  • Perl ER (1998) Getting a line on pain: is it mediated by dedicated pathways? Nat Neurosci 1:177–178

    Article  CAS  PubMed  Google Scholar 

  • Peter W, Riedel W (1982) Neurogenic non-adrenergic cutaneous vasodilatation elicited by hypothalamic thermal stimulation in dogs. Pflugers Arch 395:115–120

    CAS  PubMed  Google Scholar 

  • Pierau, FK (1967) Endoanaesthetische Beeinflussung von Receptoren der Katzenzunge. Pflugers Arch 296:148–169

    CAS  Google Scholar 

  • Pierau FK (1996) Peripheral thermosensors. In: Fregly MJ, Blatteis CM (eds) APS handbook of physiology section 4. Environmental physiology, vol. I. Oxford University Press, Oxford, pp 85–104

    Google Scholar 

  • Pierau FK, Spaan G (1970) Renshaw inhibition during local spinal cord cooling and warming. Experientia 26:978–979

    CAS  PubMed  Google Scholar 

  • Pleschka K (1984) Control of tongue blood flow in regulation of heat loss in mammals. Rev Physiol Biochem Pharmacol 100:75–120

    CAS  PubMed  Google Scholar 

  • Pozos RS, Iaizzo PA, Danzl DF, Mills WT (1996) Adaptation to the microbial environment. In: Fregly MJ, Blatteis CM (eds) APS handbook of physiology section 4. Environmental physiology, vol I. Oxford University Press, Oxford, pp 557–575

    Google Scholar 

  • Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan V, Yashpal K, Hui-Chan CWY, Henry JL (1995) Implication of a nitric oxide synthase mechanism in the action of substance P: L-NAME blocks thermal hyperalgesia induced by endogenous and exogenous substance P in the rat. Eur J Neurosci 7:1920–1925

    CAS  PubMed  Google Scholar 

  • Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the rat. J Comp Neurol 96:415–466

    Google Scholar 

  • Riedel W (1976) Warm receptors in the dorsal abdominal wall of the rabbit. Pflugers Arch 361:205–206

    CAS  PubMed  Google Scholar 

  • Riedel W (1983) Effects of propylthiouracil, and of bacterial endotoxin (LPS), on thyroid hormones, respiratory rate, cutaneous and renal blood flow in rabbits. Pflugers Arch 399:11–17

    CAS  PubMed  Google Scholar 

  • Riedel W (1990) Mechanics of fever. J Basic Clin Physiol Pharmacol 1:291–322

    CAS  PubMed  Google Scholar 

  • Riedel W (1997) Role of nitric oxide (NO), oxygen radicals and prostaglandins in fever. Int J Tissue React 19:171–178

    CAS  PubMed  Google Scholar 

  • Riedel W (2001) Temperature and redox homeostasis. In: Kosaka M, Suguhara T, Schmidt KL, Simon E (eds) Thermotherapy for neoplasia, inflammation and pain. Springer, Tokyo, pp 300–312

    Google Scholar 

  • Riedel W, Burke SL (1988) Selective autonomic nervous control of thyroid hormone and calcitonin secretion during metabolic and cardiorespiratory activation by intracisternal thyrotropin-releasing hormone (TRH). J Auton Nerv Syst 24:157–173

    Article  CAS  PubMed  Google Scholar 

  • Riedel W, Hales JRS (1983) Prostaglandins modify tissue blood flow and respiratory rate in febrile rabbits. J Therm Biol 8:199–201

    Article  CAS  Google Scholar 

  • Riedel W, Maulik G (1999) Fever: an integrated response of the central nervous system to oxidative stress. Mol Cell Biochem 196:125–132

    Article  CAS  PubMed  Google Scholar 

  • Riedel W, Neeck G (2001) Nociception, pain, and antinociception: current concepts. Z Rheumatol 60:404–415

    Article  CAS  PubMed  Google Scholar 

  • Riedel W, Iriki M, Simon E (1972) Regional differentiation of sympathetic activity during peripheral heating and cooling in anaesthetized rabbits. Pflugers Arch 332:239–247

    CAS  PubMed  Google Scholar 

  • Riedel W, Siaplauras G, Simon E (1973) Intra-abdominal thermosensitivity in the rabbit as compared with spinal thermosensitivity. Pflugers Arch 340:59–70

    CAS  PubMed  Google Scholar 

  • Riedel W, Kozawa E, Iriki M (1982) Renal and cutaneous vasomotor and respiratory rate adjustments to peripheral cold and warm stimuli and to bacterial endotoxin in conscious rabbits. J Auton Nerv Syst 5:177–195

    Article  CAS  PubMed  Google Scholar 

  • Riedel W, Städter WR, Gray DA (1986) Activation of thyrotropin-releasing hormone (TRH) neurons by cold, or after thyroidectomy, inhibits antidiuretic hormone (ADH) secretion in febrile rabbits. J Auton Nerv Syst Suppl 543–552

  • Riedel W, Lang U, Oetjen U, Schlapp U, Shibata M (2003) Inhibition of oxygen radical formation by methylene blue, aspirin, or α-lipoic acid, prevents bacterial-lipopolysaccharide-induced fever. Mol Cell Biochem 247:83–94

    Article  CAS  PubMed  Google Scholar 

  • Rossi F (1986) The O2-forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta 853:65–89

    Article  CAS  PubMed  Google Scholar 

  • Rowell LB (1983) Cardiovascular adjustments to thermal stress. In: Shepherd JT, Abboud FM, Geiger SR (eds) Handbook of physiology, section 2. The cardiovascular system. Peripheral circulation and organ blood flow, part 2, vol III. American Physiological Society, Bethesda, pp 967–1023

    Google Scholar 

  • Rymaszewska J, Bialy D, Zagrobelny Z, Kiejna A (2000) The influence of whole body cryotherapy on mental health. Psychiatr Pol 34:649–653

    CAS  PubMed  Google Scholar 

  • Sann H, Pierau FK (1998) Efferent functions of C-fiber nociceptors. Z Rheumatol 57 [Suppl 2]:8–13

    Article  CAS  PubMed  Google Scholar 

  • Savard GK, Nielsen B, Laszczynska J, Larsen BE, Saltin B (1988) Muscle blood flow is not reduced in humans during moderate exercise and heat stress. J Appl Physiol 64:649–657

    CAS  PubMed  Google Scholar 

  • Schäfer K, Braun HA, Isenberg C (1986) Effect of menthol on cold receptor activity: analysis of receptor processes. J Gen Physiol 88:757–776

    Article  PubMed  Google Scholar 

  • Schmid HA, Riedel W, Simon E (1998) Role of nitric oxide in temperature regulation. Prog Brain Res 115:25–49

    PubMed  Google Scholar 

  • Schmidt I (2001) The role of juvenile thermoregulatory thermogenesis in the development of normal energy balance or obesity. In: Kosaka M, Suguhara T, Schmidt KL, Simon E (eds) Thermotherapy for neoplasia, inflammation and pain. Springer, Tokyo, pp 215–225

    Google Scholar 

  • Schönung W, Wagner H, Simon E (1972) Neurogenic vasodilatory component in the thermoregulatory skin blood flow response of the dog. Naunyn-Schmiedebergs Arch Pharmacol 273:230–241

    PubMed  Google Scholar 

  • Sen CK (1999) Glutathione homeostasis in response to exercise training and nutritional supplements. Mol Cell Biochem 196:31–42

    Article  CAS  PubMed  Google Scholar 

  • Shahid MS, Hatle L, Mansour H, Mimish L (1999) Echocardiographic and Doppler study of patients with heatstroke and heat exhaustion. Int J Cardiovasc Imaging 15:279–285

    Article  CAS  Google Scholar 

  • Shea VK, Perl ER (1985) Sensory receptors with unmyelinated C fibers innervating the skin of the rabbit’s ear. J Neurophysiol 54:491–501

    CAS  PubMed  Google Scholar 

  • Shi X, Ding M, Dong Z, Chen F, Ye J, Wang S, Leonard SS, Castranova V, Vallyathan V (1999) Antioxidant properties of aspirin: characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-κB activation, and TNF-α production. Mol Cell Biochem 199:93–102

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Hori T, Kiyohara T, Nakashima T, Osaka T (1983a) Impairment of thermoregulatory cooling behavior by single cortical spreading depression in the rat. Physiol Behav 30:599–605

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Hori T, Kiyohara T, Nakashima T (1983b) Facilitation of thermoregulatory heating behavior by single cortical spreading depression in the rat. Physiol Behav 31:651–656

    Article  Google Scholar 

  • Shibata M, Hori T, Kiyohara T, Nakashima T (1984) Activity of hypothalamic thermosensitive neurons during cortical spreading depression in the rat. Brain Res 308:255–262

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Hori T, Nagasaka T (1985) Effects of single cortical spreading depression on metabolic heat production in the rat. Physiol Behav 34:563–567

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Hori T, Kiyohara T, Nakashima T (1988) Convergence of skin and hypothalamic temperature signals on the sulcal prefrontal cortex in the rat. Brain Res 443:37–46

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Uno T, Kajihara M (2000) Heat stress enhances LPS-induced fever in rabbits. Soc Neurosci Abstr 26, 649.14

  • Shiraki K, Sagawa S, Tajima F (2001) Muscle sympathetic nerve activity during acute increase in core temperature in humans. In: Kosaka M, Suguhara T, Schmidt KL, Simon E (eds) Thermotherapy for neoplasia, inflammation and pain. Springer, Tokyo, pp 159–165

    Google Scholar 

  • Simon E (2000) The enigma of deep-body thermosensory specificity. Int J Biometeorol 44:105–120

    Article  CAS  PubMed  Google Scholar 

  • Simon E, Riedel W (1975) Diversity of regional sympathetic outflow in integrative cardiovascular control patterns and mechanisms. Brain Res 87:323–333

    Article  CAS  PubMed  Google Scholar 

  • Simon E, Rautenberg W, Thauer R, Iriki M (1964) Die Auslösung von Kältezittern durch lokale Kühlung im Wirbelkanal. Pflugers Arch 281:309–331

    Google Scholar 

  • Simone DA, Kajander KC (1996) Excitation of rat cutaneous nociceptors by noxious cold. Neurosci Lett 213:53–56

    Article  CAS  PubMed  Google Scholar 

  • Simone DA, Kajander KC (1997) Responses of cutaneous A-fiber nociceptors to noxious cold. J Neurophysiol 77:2049–2060

    CAS  PubMed  Google Scholar 

  • Singer W (2002) Der Beobachter im Gehirn. Essays zur Hirnforschung. Suhrkamp, Frankfurt/Main

    Google Scholar 

  • Stancak A Jr, Yamamotova A, Kulls IP, Sekyra IV (1996) Cardiovascular adjustments and pain during repeated cold pressor test. Clin Auton Res 6:83–89

    PubMed  Google Scholar 

  • Steen KH, Reeh PW, Anton F, Handwerker HO (1992) Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 12:86–95

    CAS  PubMed  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  • Szelenyi Z, Szekely M (1979) Comparison of the effector mechanisms during endotoxin fever in the adult rabbit. Acta Physiol Acad Sci Hung 54:33–41

    CAS  PubMed  Google Scholar 

  • Szolcsányi J, Jancsó-Gábor A (1975) Analysis of the role of warmth detectors by means of capsaicin under different conditions. In: Lomax P, Schönbaum E, Jacob J (eds) Temperature regulation and drug action. Karger, Basel, pp 331–338

    Google Scholar 

  • Tanaka H, Kanosue K, Yanase M, Nakayama T (1990) Effects of pyrogen administration on temperature regulation in exercising rats. Am J Physiol 258: R842–R847

    CAS  PubMed  Google Scholar 

  • Tang LH, Aizenman E (1993) Allosteric modulation of the NMDA receptor by dihydrolipoic and lipoic acid in rat cortical neurons in vitro. Neuron 11:857–863

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M (2003) How the body senses temperature—the TRP-channel thermoreceptor. J Physiol Soc Jpn 65:130–137

    CAS  Google Scholar 

  • Toth LA, Blatteis CM (1996) Adaptation to the microbial environment. In: Fregly MJ, Blatteis CM (eds) APS handbook of physiology section 4. Environmental physiology, vol II. Oxford University Press, Oxford, pp 1489–1519

    Google Scholar 

  • Viswanathan M, Van Dijk JP, Graham TE, Bonen A, George JC (1987) Exercise- and cold-induced changes in plasma beta-endorphin and beta-lipotropin in men and women. J Appl Physiol 62:622–627

    CAS  PubMed  Google Scholar 

  • Wallin BG (1990) Neural control of human skin blood flow. J Auton Nerv Syst 30 [Suppl]:S185–S190

    Article  PubMed  Google Scholar 

  • Walther OE, Iriki M, Simon E (1970) Antagonistic changes of blood flow and sympathetic activity in different vascular beds following central thermal stimulation. II. Cutaneous and visceral sympathetic activity during spinal cord heating and cooling in anesthetized rabbits and cats. Pflugers Arch 319:162–184

    CAS  PubMed  Google Scholar 

  • Webster EL, Torpy DJ, Elenkov IJ, Chrousos GP (1998) Corticotropin-releasing hormone and inflammation. Ann NY Acad Sci 840:21–32

    CAS  PubMed  Google Scholar 

  • Weihrauch D, Riedel W (1997) Nitric oxide (NO) and oxygen radicals, but not prostaglandins, modulate fever. Ann NY Acad Sci 813:373–382

    CAS  PubMed  Google Scholar 

  • Weng HR, Schouenborg J (1998) On the cutaneous receptors contributing to withdrawal reflex pathways in the decerebrate spinal rat. Exp Brain Res 118:71–77

    Article  CAS  PubMed  Google Scholar 

  • Werner J (1977) Influences of local and global temperature stimuli on the Lewis-reaction. Pflugers Arch 367:291–294

    CAS  PubMed  Google Scholar 

  • Wolf S, Hardy JD (1941) Studies on pain. Observations on pain due to local cooling and on factors involved in the “cold pressor” effect. J Clin Invest 20:521–533

    Google Scholar 

  • Wozniewski M, Skrzek A, Sabir H, Zagrobelny Z (2001) Function of hand and knee in patients post cryotherapy of whole body and exercises due to rheumatoid arthritis. Reumatologia (Warsaw) 39:155–163

    Google Scholar 

  • Yusa T, Beckman JS, Crapo JD, Freeman BA (1987) Hyperoxia increases H2O2 production by brain in vivo. J Appl Physiol 63:353–358

    CAS  PubMed  Google Scholar 

  • Zotterman Y (1953) Special senses: thermal receptors. Annu Rev Physiol 15:357–372

    Article  CAS  PubMed  Google Scholar 

  • Zotterman Y (1959) Thermal sensations. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology, section 1: neurophysiology, I. American Physiological Society, Washington DC, pp 431–458

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Kunihiko Mabuchi, Center for Collaborative Research of the University of Tokyo, to Prof. Koichi Suzuki, Tokyo Metropolitan Institute of Gerontology, and to the Japan Society for the Promotion of Science, for financial support and generous hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Nomoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomoto, S., Shibata, M., Iriki, M. et al. Role of afferent pathways of heat and cold in body temperature regulation. Int J Biometeorol 49, 67–85 (2004). https://doi.org/10.1007/s00484-004-0220-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-004-0220-8

Keywords

Navigation