Skip to main content

Advertisement

Log in

Modeling fire ignition patterns in Mediterranean urban interfaces

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The rapid growth of built-up areas and infrastructure in the Mediterranean environment has resulted in the expansion of urban interfaces where fire can ignite and spread. Within this context, there is a need to understand spatial patterns of ignition distribution and the relative importance of influencing drivers. In response to this need we developed an analysis of fire ignition patterns using human and biophysical explanatory variables by firstly developing two different linear models to assess patterns of fire ignition points in terms of occurrence (presence/absence) and frequency (number of ignition points per area and secondly applying statistical tests to both models to evaluate the most important human and/or biophysical drivers influencing these patterns. The probability of ignition point occurrence and frequency were mapped using the predicted values of the two models in the Apulia region (southern Italy). Our findings revealed that dependent variables (fire ignition occurrence points and frequency) are negatively correlated with population density, but positively correlated for presence of urban areas with a significantly higher likelihood of ignition in cultivated (crop)land, forest, shrubland, grassland, and other natural spaces. The probability of ignition increased with elevation and slope. The maps show that the probability of ignition occurrence is relevant along the coast in the northern and southern parts of the region, especially in urban interfaces with a strong presence of shrubland and Mediterranean maquis. Ignition point frequency was predicted along the coast, particularly in the south and in some densely urbanized inland areas. By adopting the models, forest managers and decision makers may avail of the knowledge gained to design and promote sustainable fire management strategies in the Apulia region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adelle C, Pallemaerts M (2010) Sustainable development indicators. Overview of relevant FP-funded research and identification of further needs. European Commission. Directorate-General for researcH, http://eC.europA.eu/research/research-eu

  • Ager AA, Vaillant NM, Finney MA (2010) A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For Ecol Manag 259:1556–1570

    Article  Google Scholar 

  • Agresti A (2002) Categorical data analysis. Wiley, New York

    Book  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Argañaraz JP, Radeloff VC, Bar-Massada A, Gavier-Pizarro GI, Scavuzzo CM, Bellis LM (2017) Assessing wildfire exposure in the wildland–urban interface area of the mountains of central Argentina. J Environ Manag 196:499–510

    Article  Google Scholar 

  • Badia A, Serra P, Modugno S (2011) Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland-urban interface areas. Appl Geogr 31(3):930–940

    Article  Google Scholar 

  • Bar-Massada A, Radeloff VC, Stewart SI (2011) Allocating fuel breaks to optimally protect structures in the wildland–urban interface. Int J Wildland Fire 20:59–68

    Article  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324:481–484

    Article  CAS  Google Scholar 

  • Calkin DE, Cohen JD, Finney MA, Thompson MP (2014) How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc Natl Acad Sci USA 111(2):746–751

    Article  CAS  Google Scholar 

  • Capra GF, Tidu S, Lovreglio R, Certini G, Salis M, Bacciu V, Ganga A, Filzmoser P (2018) The impact of wildland fires on calcareous Mediterranean pedosystems (Sardinia Italy)—an integrated multiple approach. Sci Total Environ 624:1152–1162

    Article  CAS  Google Scholar 

  • Cardille JA, Ventura SJ (2001) Occurrence of wildfire in the northern Great Lakes Region: effects of land cover and land ownership assessed at multiple scales. Int J Wildland Fire 10(2):145–154

    Article  Google Scholar 

  • Chuvieco E (1999) Measuring changes in landscape pattern from satellite images: short-term effects of fire on spatial diversity. Int J Remote Sens 20(12):2331–2346

    Article  Google Scholar 

  • Collins KM, Price OF, Penman TD (2015) Spatial patterns of wildfire ignitions in south-eastern Australia. Int J Wildland Fire 24(8):1098–1108

    Article  Google Scholar 

  • Crawley MJ (2013) The R book, 2nd edn. Wiley, West Sussex

    Google Scholar 

  • Csontos P, Cseresnyes I (2015) Fire-risk evaluation of austrian pine stands in hungary—effects of drought conditions and slope aspect on fire spread and fire behaviour. Carpath J Earth Environ 10(3):247–254

    Google Scholar 

  • de Vasconcelos MP, Silva S, Tome M, Alvim M, Pereira JC (2001) Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Rem Sens 67(1):73–81

    Google Scholar 

  • Del Hoyo LV, Isabel MPM, Vega FJM (2011) Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. Eur J For Res 130(6):983–996

    Article  Google Scholar 

  • Elia M, Lafortezza R, Colangelo G, Sanesi G (2014) A streamlined approach for the spatial allocation of fuel removals in wildland–urban interfaces. Land Ecol 29(10):1771–1784

    Article  Google Scholar 

  • Elia M, Lafortezza R, Lovreglio R, Sanesi G (2015) Developing custom fire behavior fuel models for Mediterranean wildland–urban interfaces in southern Italy. Environ Manag 56(3):754–764

    Article  Google Scholar 

  • Elia M, Lovreglio R, Ranieri NA, Sanesi G, Lafortezza R (2016) Cost-effectiveness of fuel removals in mediterranean wildland-urban interfaces threatened by wildfires. Forests 7(7):149

    Article  Google Scholar 

  • Faivre N, Jin Y, Goulden ML, Randerson JT (2014) Controls on the spatial pattern of wildfire ignitions in Southern California. Int J Wildland Fire 23:799–811

    Article  Google Scholar 

  • Fried JS, Torn MS, Mills E (2004) The impact of climate change on wildfire severity: a regional forecast for northern California. Clim Change 64:169–191

    Article  Google Scholar 

  • Galiana L, Hernando C, Guijarro M (2016) State of the art of the management of wildland-urban interfaces: managing the WUI in the Mediterranean forests. UCM INIA

  • Gallego F (2010) A population density grid of the European Union. Popul Environ 31:460–473

    Article  Google Scholar 

  • Ganteaume A, Long-Fournel M (2015) Driving factors of fire density can spatially vary at the local scale in south-eastern France. Int J Wildland Fire 24(5):650–664

    Article  Google Scholar 

  • Genton MG, Butry DT, Gumpertz ML, Prestemon JP (2006) Spatio-temporal analysis of wildfire ignitions in the St Johns River water management district Florida. Int J Wildland Fire 15(1):87–97

    Article  Google Scholar 

  • Gorte RW, Bracmort K (2012) Wildfire protection in the wildland–urban interface. CRS report for congress. Congressional Research Service, January 23

  • Gralewicz NJ, Nelson TA, Wulder MA (2012) Factors influencing national scale wildfire susceptibility in Canada. For Ecol Manag 265:20–29

    Article  Google Scholar 

  • Guo F, Su Z, Wang G, Sun L, Lin F, Liu A (2016) Wildfire ignition in the forests of southeast China: identifying drivers and spatial distribution to predict wildfire likelihood. Appl Geogr 66:12–21

    Article  Google Scholar 

  • Guo F, Su Z, Wang G, Sun L, Tigabu M, Yang X, Hu H (2017) Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Sci Total Environ 605:411–425

    Article  CAS  Google Scholar 

  • Hammer RB, Stewart SI, Radeloff VC (2009) Demographic trends the wildland–urban interface and wildfire management. Soc Nat Resour 22(8):777–782

    Article  Google Scholar 

  • Hann WJ, Bunnell DL (2001) Fire and land management planning and implementation across multiple scales. Int J Wildland Fire 10(4):389–403

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2005) Logistic regression for matched case-control studies. In: Applied logistic regression, 2nd edn. Wiley Inc, New york, pp 223–259

    Chapter  Google Scholar 

  • Jiménez-Valverde A (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr 21:498–507

    Article  Google Scholar 

  • Keeley JE, Fotheringham CJ (2001) Historic fire regime in southern California shrublands. Conserv Biol 15(6):1536–1548

    Article  Google Scholar 

  • Kocher SD, Butsic V (2017) Governance of land use planning to reduce fire risk to homes Mediterranean France and California. Land 6(2):24

    Article  Google Scholar 

  • Krawchuk MA, Cumming SG, Flannigan MD, Wein RW (2006) Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology 87(2):458–468

    Article  CAS  Google Scholar 

  • Lafortezza R, Sanesi G, Chen J (2013) Large-scale effects of forest management in Mediterranean landscape of Europe. iForest Biogeosci For 6:331–335

    Article  Google Scholar 

  • Lafortezza R, Tanentzap AJ, Elia M, John R, Sanesi G, Chen J (2015) Prioritizing fuel management in urban interfaces threatened by wildfires. Ecol Indic 48:342–347

    Article  Google Scholar 

  • Liu Z, Yang J, Chang Y, Weisberg PJ, He HS (2012) Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob Change Biol 18(6):2041–2056

    Article  Google Scholar 

  • Liu Y, Goodrick SL, Stanturf JA (2013) Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. For Ecol Manag 294:120–135

    Article  Google Scholar 

  • Mancini LD, Elia M, Barbati A, Salvati L, CoronaP Lafortezza R, Sanesi G (2018) Are wildfires knocking on the built-up areas door? Forests 9(5):234. https://doi.org/10.3390/f9050234

    Article  Google Scholar 

  • Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252

    Article  Google Scholar 

  • McConnell WJ et al (2009) Research on coupled human and natural systems (CHANS): approach challenges and strategies. Bull Ecol Soc Am Meeting Rep 92:218–228

    Google Scholar 

  • McKenzie D, Gedalof Z, Peterson DL, Mote P (2004) Climatic change wildfire and conservation. Conserv Biol 18:890–902

    Article  Google Scholar 

  • Menard S (2004) Six approaches to calculating standardized logistic regression coefficients. Am Stat 58(3):218–223

    Article  Google Scholar 

  • Miller JD, Safford HD, Crimmins M, Thode AE (2009) Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains California and Nevada, USA. Ecosystem 12:16–32

    Article  Google Scholar 

  • Miranda BR, Sturtevant BR, Stewart SI, Hammer RB (2012) Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA. Int J Wildland Fire 21(2):141–154

    Article  Google Scholar 

  • Modugno S, Balzter H, Cole B, Borrelli P (2016) Mapping regional patterns of large forest fires in wildland–urban Interface areas in Europe. J Environ Manag 172:112–126

    Article  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape-wildfire interaction in southern Europe: implications for landscape management. J Environ Manag 92:2389–2402

    Article  Google Scholar 

  • Mundo IA, Wiegand T, Kanagaraj R, Kitzberger T (2013) Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia. J Environ Manag 123:77–87

    Article  Google Scholar 

  • Murphy BP, Bradstock RA, Boer MM, Carter J, Cary GJ, Cochrane MA, Fensham RJ, Russell-Smith J, Williamson GJ, Bowman DM (2013) Fire regimes of Australia: a pyrogeographic model system. J Biogeogr 40(6):1048–1058

    Article  Google Scholar 

  • Narayanaraj G, Wimberly MC (2012) Influences of forest roads on the spatial patterns of human-and lightning-caused wildfire ignitions. Appl Geogr 32(2):878–888

    Article  Google Scholar 

  • National Geographic Italia (2017) Estate 2017, un terzo degli incendi nelle aree protette. http://www.nationalgeographic.it/ambiente/notizie/2017/08/16/news/incendi_devastano_aree_protette_italiane-3631454/

  • Penman TD, Bradstock RA, Price O (2013) Modelling the determinants of ignition in the Sydney Basin Australia: implications for future management. Int J Wildland Fire 22:469–478

    Article  Google Scholar 

  • Platt RV, Veblen TT, Sherriff RL (2008) Spatial model of forest management strategies and outcomes in the wildland–urban interface. Nat Hazard Rev 9(4):199–208

    Article  Google Scholar 

  • Radeloff VC, Stewart SI, Hawbaker TJ, Gimmi U, Pidgeon AM, Flather CH, Hammer BR, Helmers DP (2010) Housing growth in and near United States protected areas limits their conservation value. PNAS 107(2):940–945

    Article  CAS  Google Scholar 

  • Reilly MJ, Elia M, Spies TA, Gregory MJ, Sanesi G, Lafortezza R (2018) Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA. Ecol Appl 28(2):291–308

    Article  Google Scholar 

  • Reineking B, Weibel P, Conedera M, Bugmann H (2010) Environmental determinants of lightning-v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. Int J Wildland Fire 19(5):541–557

    Article  Google Scholar 

  • Rodrigues M, Jiménez A, de la Riva J (2016) Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Nat Hazards 84(3):2049–2070

    Article  Google Scholar 

  • Romero-Calcerrada R, Novillo CJ, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Lands Ecol 23(3):341–354

    Article  Google Scholar 

  • Salis M, Ager AA, Finney MA, Arca B, Spano D (2014) Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Nat Hazards 71(3):1389–1418

    Article  Google Scholar 

  • San-Miguel-Ayanz J, Moreno JM, Camia A (2013) Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. For Ecol Manag 294:11–22

    Article  Google Scholar 

  • Schoennagel T, Veblen TT, Romme WH (2004) The interaction of fire, fuels and climate across Rocky Mountain forests. AIBS Bull 54(7):661–676

    Google Scholar 

  • Scott JH, Thompson MP, Calkin DE (2013) A wildfire risk assessment framework for land and resource management. Gen Tech Rep RMRS-GTR-315. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station

  • Spyratos V, Bourgeron PS, Ghil M (2007) Development at the wildland–urban interface and the mitigation of forest-fire risk. PNAS 104(36):14272–14276

    Article  CAS  Google Scholar 

  • Sugihara NG (2006) Fire in California’s ecosystems. University of California Press, Berkeley

    Book  Google Scholar 

  • Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17(5):602–613

    Article  Google Scholar 

  • Syphard AD, Keely JE, Brennan TJ (2011) Comparing the role of fuel breaks across southern California national forests. For Ecol Manag 261:2038–2048

    Article  Google Scholar 

  • Theobald DM, Romme WH (2007) Expansion of the US wildland–urban interface. Lands Urban Plan 83(4):340–354

    Article  Google Scholar 

  • Thompson MP, Calkin DE, Finney MA, Ager AA, Gilbertson-Day JW (2011) Integrated national-scale assessment of wildfire risk to human and ecological values. Stoch Environ Res Risk Assess 25(6):761–780

    Article  Google Scholar 

  • Verde JC, Zȇzere JL (2010) Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat Hazard Health Syst Sci 10:485–497

    Article  Google Scholar 

  • Wei Y, Rideout D, Kirsch A (2008) An optimization model for locating fuel treatments across a landscape to reduce expected fire losses. Can J For Res 37:1924–1932

    Article  Google Scholar 

  • Westerling AL, Bryant BP (2008) Climate change and wildfire in California. Clim Change 87(1):231–249

    Article  Google Scholar 

  • Wu Z, He HS, Yang J, Liu Z, Liang Y (2014) Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Sci Total Environ 493:472–480

    Article  CAS  Google Scholar 

  • Zhang Y, Lim S, Sharples JJ (2016) Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. GNHR 7(6):1800–1815

    Google Scholar 

Download references

Acknowledgements

This research was developed in the context of the project concerning the update of the forecasting, monitoring and suppression forest fire risk plan (AIB plan) in the Apulia Region, funded by Civil Protection Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elia, M., Giannico, V., Lafortezza, R. et al. Modeling fire ignition patterns in Mediterranean urban interfaces. Stoch Environ Res Risk Assess 33, 169–181 (2019). https://doi.org/10.1007/s00477-018-1558-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1558-5

Keywords

Navigation