Skip to main content
Log in

An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We propose a spectral turning-bands approach for the simulation of second-order stationary vector Gaussian random fields. The approach improves existing spectral methods through coupling with importance sampling techniques. A notable insight is that one can simulate any vector random field whose direct and cross-covariance functions are continuous and absolutely integrable, provided that one knows the analytical expression of their spectral densities, without the need for these spectral densities to have a bounded support. The simulation algorithm is computationally faster than circulant-embedding techniques, lends itself to parallel computing and has a low memory storage requirement. Numerical examples with varied spatial correlation structures are presented to demonstrate the accuracy and versatility of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alabert F (1987) The practice of fast conditional simulations through the LU decomposition of the covariance matrix. Math Geol 19(5):369–386

    Article  Google Scholar 

  • Almeida AS, Journel AG (1994) Joint simulation of multiple variables with a Markov-type coregionalization model. Math Geol 26(5):565–588

    Article  Google Scholar 

  • Arroyo D, Emery X, Peláez M (2012) An enhanced Gibbs sampler algorithm for non-conditional simulation of Gaussian random vectors. Comput Geosci 46:138–148

    Article  Google Scholar 

  • Bevilacqua M, Hering AS, Porcu E (2015) On the flexibility of multivariate covariance models. Stat Sci 30(2):167–169

    Article  Google Scholar 

  • Bochner S (1933) Monotone Funktionen Stieljessche integrale and harmonische analyse. Math Ann 108:378–410

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forescasting and control, revised edn. Holden-Day, Oakland

  • Chan G, Wood A (1999) Simulation of stationary Gaussian vector fields. Stat Comput 9(4):265–268

    Article  Google Scholar 

  • Chilès JP, Delfiner P (1997) Discret exact simulation by the Fourier method. In: Baafi EY, Schofield NA (eds) Geostatistics Wollongong ’96, vol 1. Kluwer, Dordrecht, pp 258–269

    Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: Modeling Spatial Uncertainty, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Christakos G (1992) Random field models in earth sciences. Academic Press, San Diego

    Google Scholar 

  • Cramér H (1940) On the theory of Stationary random functions. Ann Math 41:215–230

    Article  Google Scholar 

  • Daley DJ, Porcu E, Bevilacqua M (2015) Classes of compactly supported covariance functions for multivariate random fields. Stoch Environ Res Risk Assess 29(4):1249–1263

    Article  Google Scholar 

  • Davis MW (1987) Production of conditional simulations via the LU triangular decomposition of the covariance matrix. Math Geol 19(2):91–98

    Google Scholar 

  • De Iaco S, Palma M, Posa D (2003) Covariance functions and models for complex-valued random fields. Stoch Environ Res Risk Assess 17(3):145–156

    Article  Google Scholar 

  • Dietrich CR, Newsam GN (1993) A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resour Res 29(8):2861–2869

    Article  Google Scholar 

  • Emery X (2007) Reducing fluctuations in the sample variogram. Stoch Environ Res Risk Assess 21(4):391–403

    Article  Google Scholar 

  • Emery X (2008) A turning bands program for conditional Co-simulation of cross-correlated random fields. Comput Geosci 34(12):1850–1862

    Article  CAS  Google Scholar 

  • Emery X, Arroyo D, Peláez M (2014) Simulating large Gaussian random vectors subject to inequality constraints by Gibbs sampling. Math Geosci 46(3):265–283

    Article  Google Scholar 

  • Emery X, Lantuéjoul C (2006) TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput Geosci 32(10):1615–1628

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Genton M, Kleiber W (2015) Cross-covariance functions for multivariate geostatistics. (With discussion). Stat Sci 30(2):147–163

    Article  Google Scholar 

  • Gneiting T, Kleiber W, Schlather M (2010) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105(491):1167–1177

    Article  CAS  Google Scholar 

  • Gneiting T, Ševčíhová H, Percival DB, Schlather M, Jiang Y (2006) Fast and exact simulation of large Gaussian lattice systems in \(\mathbb{R}^2\): exploring the limits. J Comput Graph Stat 15(3):483–501

  • Golub G, Van Loan C (1989) Matrix computations. John Hopkins Press, Baltimore

    Google Scholar 

  • Gradshtein IS, Ryzhik IM (1965) Table of integrals, series and products, 4th edn. Academic Press, New York

    Google Scholar 

  • Grzebyk M, Wackernagel H (1994) Multivariate analysis and spatial/temporal scales: Real and complex Models. In Proceedings of XVIIth international biometric conference, Hamilton, Ontario vol 1 pp 19–33

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Mantoglou A (1987) Digital simulation of multivariate two- and three-dimensional stochastic processes with a spectral turning bands method. Math Geol 19(2):129–149

  • Marcotte D (2012) Revisiting the linear model of coregionalization. In: Abrahamsen P, Hauge R, and Kolbjørnsen O, (eds). Proceedings of IX international geostatistics congress, Springer-Verlag, Oslo, 11–15 June 2012, pp 67–78

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5:439–468

    Article  Google Scholar 

  • Mignolet MP, Spanos PD (1992) Simulation of homogeneous two-dimensional random fields: part I-AR and ARMA models. J Appl Mech 59(2):260–269

    Article  Google Scholar 

  • Pardo-Iguzquiza E, Chica-Olmo M (1993) The fourier integral method: an efficient spectral method for simulation of random fields. Math Geol 25(2):177–217

    Article  Google Scholar 

  • Porcu E, Gregori P, Mateu J, Ostoja-Starzewski M (2012) New classes of spectral densities for lattice processes and random fields built from simple univariate margins. Stoch Environ Res Risk Assess 26(4):479–492

  • Ripley BD (1987) Stochastic Simulation. Wiley, New York

  • Schlather M (2012) Construction of covariance functions and unconditional simulation of random fields. Advances and Challenges in Space-Time modelling of natural events. Springer-Verlag, Lecture Notes in Statistics, pp 25–54

  • Shinozuka M (1971) Simulation of multivariate and multidimensional random processes. J Acoust Soc Am 49(1B):357–367

    Article  Google Scholar 

  • Shinozuka M, Jan CM (1972) Digital simulation of random processes and its applications. J Sound Vib 25(1):111–128

    Article  Google Scholar 

  • Spanos PD, Mignolet MP (1992) Simulation of homogeneous two-dimensional random fields: part II-MA and ARMA models. J Appl Mech 59(2):270–277

  • Ver Hoef JM, Barry RP (1998) Constructing and fitting models for cokriging and multivariate spatial prediction. J Stat Plan Infer 69:275–294

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Wood ATA, Chan G (1994) Simulation of stationary Gaussian processes in \([0,1]^d\). J Comput Graph Stat 3(4):409–432

    Google Scholar 

  • Zastavnyi VP (1991) Positive-definite functions depending on the norm. Solution of the Schoenberg problem. Institute of Applied Mathematics and Mechanics, Ukranian Academy of Sciences, Donetsk

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding by the Chilean Commission for Scientific and Technological Research, through Projects CONICYT / FONDECYT / REGULAR / No. 1130085, CONICYT / FONDECYT / POSTDOCTORADO / No. 3140568 and CONICYT / FONDECYT / REGULAR / No. 1130647, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Emery.

Appendix: proof of equations (14), (16) and (17)

Appendix: proof of equations (14), (16) and (17)

Let \(Y_0\) be a scalar random field. The random field regularized by a sampling function \(\omega _r(\cdot )\) being the indicator function of the ball of \({\mathbb{R}}^d\) with arbitrary radius r is defined as (Chilès and Delfiner 2012)

$$\begin{aligned} Y_{r}({\mathbf{x}}) = \int _{{\mathbb{R}}^d} Y_0({\mathbf{x}}+{\mathbf{t}})\omega _r({\mathbf{t}})\, {\mathrm{d}}{\mathbf{t}}. \end{aligned}$$

If \(Y_0\) is a second-order stationary random field with covariance \(C_0({\mathbf{h}})\), then \(Y_{r}\) is also a second-order stationary random field, therefore one can define the following covariances that depend only on \({\mathbf{h}}\).

The covariance between \(Y_0({\mathbf{x}}+{\mathbf{h}})\) and \(Y_{r}({\mathbf{x}})\) is

$$\begin{aligned} C_{0r}({\mathbf{h}})= & {} \int _{{\mathbb{R}}^d} {\mathbb{E}}\{Y_0({\mathbf{x}}+{\mathbf{h}})\cdot Y_0({\mathbf{x}}+{\mathbf{t}})\}{\omega }_r({\mathbf{t}})\, {\mathrm{d}}{\mathbf{t}}\\= & {} \int _{{\mathbb{R}}^d}C_0({\mathbf{h}}-{\mathbf{t}}){\omega }_r({\mathbf{t}})\, {\mathrm{d}} {\mathbf{t}}, \end{aligned}$$

that is

$$\begin{aligned} C_{0r} = C_0*\omega _r. \end{aligned}$$
(18)

Similarly, the covariance between \(Y_r(\mathbf {x}+\mathbf {h})\) and \(Y_{r'}(\mathbf {x})\) is (Chilès and Delfiner 2012)

$$\begin{aligned} C_{rr'} = C_0*(\breve{\omega }_r*\omega _{r'}) \end{aligned}$$
(19)

with \(\breve{\omega }({\mathbf{t}})=\omega (-{\mathbf{t}})\).

Since the Fourier transformation exchanges convolution and multiplication, Eqs. (18) and (19) in terms of Fourier transforms follow respectively, as:

$$\begin{aligned} f_{0r}= & {} f_{00}\cdot \xi _{\omega _r}\\ f_{rr^\prime}= & {} f_{00}\cdot \xi _{\breve{\omega }_r}\cdot \xi _{\omega _{r^\prime}}, \end{aligned}$$

where \(f_{00}\) is the spectral density of \(Y_0\), and \(\xi _{\omega _r}\), \(\xi _{\breve{\omega }_r}\) and \(\xi _{\omega _{r'}}\) are the Fourier transforms of \(\omega _r\), \(\breve{\omega }_r\) and \(\omega _{r'}\), respectively. As \(\omega _r\) is the indicator of a ball with radius r, one has \(\xi _{\omega _r} = \xi _{\breve{\omega }_r} = \xi (\cdot ,r)\) (Eq. (15)) (Gradshtein and Ryzhik 1965); likewise, \(\xi _{\omega _{r'}} = \xi (\cdot ,r')\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, X., Arroyo, D. & Porcu, E. An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields. Stoch Environ Res Risk Assess 30, 1863–1873 (2016). https://doi.org/10.1007/s00477-015-1151-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1151-0

Keywords

Navigation