Skip to main content

Advertisement

Log in

Quantifying the added value of climate information in a spatio-temporal dengue model

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Dengue is the world’s most important vector-borne viral disease. The dengue mosquito and virus are sensitive to climate variability and change. Temperature, humidity and precipitation influence mosquito biology, abundance and habitat, and the virus replication speed. In this study, we develop a modelling procedure to quantify the added value of including climate information in a dengue model for the 76 provinces of Thailand, from 1982–2013. We first developed a seasonal-spatial model, to account for dependency structures from 1 month to the next and between provinces. We then tested precipitation and temperature variables at varying time lags, using linear and nonlinear functional forms, to determine an optimum combination of time lags to describe dengue relative risk. Model parameters were estimated using integrated nested Laplace approximation. This approach provides a novel opportunity to perform model selection in a Bayesian framework, while accounting for underlying spatial and temporal dependency structures and linear or nonlinear functional forms. We quantified the additional variation explained by interannual climate variations, above that provided by the seasonal-spatial model. Overall, an additional 8 % of the variance in dengue relative risk can be explained by accounting for interannual variations in precipitation and temperature in the previous month. The inclusion of nonlinear functions of climate in the model framework improved the model for 79 % of the provinces. Therefore, climate forecast information could significantly contribute to a national dengue early warning system in Thailand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguiar M, Paul R, Sakuntabhai A, Stollenwerk N (2014) Are we modelling the correct dataset? Minimizing false predictions for dengue fever in Thailand. Epidemiol Infect 142(11):2447–2459. doi:10.1017/S0950268813003348

  • Anantapreecha S, Sa-ngasang A, Sawanpanyalert P, Kurane I (2004) Annual changes of predominant dengue virus serotypes in six regional hospitals in Thailand from 1999 to 2002. Dengue Bull 28:1–6

    Google Scholar 

  • Arcari P, Tapper N, Pfueller S (2007) Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr 28:251–272

    Article  Google Scholar 

  • Besag J, Green P, Higdon D, Mengersen K (1995) Bayesian computation and stochastic systems. Stat Sci 10:3–41

    Article  Google Scholar 

  • Bi P, Tong S, Donald K, Parton KA, Hobbs J (2001) Climate variability and the dengue outbreak in Townsville, Queensland, 1992–1993. Environ Health 1:54

    Google Scholar 

  • Campbell KM, Lin C, Iamsirithaworn S, Scott TW (2013) The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg 89:1066–1080

    Article  Google Scholar 

  • Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2:313–318

    Article  Google Scholar 

  • Chadee DD, Williams FL, Kitron UD (2005) Impact of vector control on a dengue fever outbreak in Trinidad, West Indies, in 1998. Trop Med Int Health 10:748–754

    Article  Google Scholar 

  • Chen J, Carlson BE, Del Genio AD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841

    Article  CAS  Google Scholar 

  • Chen M-J, Lin C-Y, Wu Y-T, Wu P-C, Lung S-C, Su H-J (2012) Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS One 7:e34651

    Article  CAS  Google Scholar 

  • Cheong YL, Burkart K, Leitão PJ, Lakes T (2013) Assessing weather effects on dengue disease in Malaysia. Int J Environ Res Public Health 10:6319–6334

    Article  Google Scholar 

  • Christophers S (1960) Aedes aegypti. The yellow fever mosquito. Its life history, bionomics and structure. Cambridge University Press, London, p 738

    Google Scholar 

  • Craig MH, Sharp BL, Mabaso ML, Kleinschmidt I (2007) Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure. Int J Health Geogr 6:44

    Article  Google Scholar 

  • Cummings DA, Irizarry RA, Huang NE, Endy TP, Nisalak A, Ungchusak K, Burke DS (2004) Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427:344–347

    Article  CAS  Google Scholar 

  • Cummings DA, Iamsirithaworn S, Lessler JT, McDermott A, Prasanthong R, Nisalak A, Jarman RG, Burke DS, Gibbons RV (2009) The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med 6:e1000139

    Article  Google Scholar 

  • Depradine C, Lovell E (2004) Climatological variables and the incidence of dengue fever in Barbados. Int J Environ Health Res 14:429–441

    Article  Google Scholar 

  • Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, Guillaumot L, Teurlai M, Gourinat A-C, Benzler J et al (2012) Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis 6:e1470

    Article  Google Scholar 

  • Devine GJ, Perea EZ, Killeen GF, Stancil JD, Clark SJ, Morrison AC (2009) Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc Natl Acad Sci 106:11530–11534

    Article  CAS  Google Scholar 

  • Endy TP, Anderson KB, Nisalak A, Yoon I-K, Green S, Rothman AL, Thomas SJ, Jarman RG, Libraty DH, Gibbons RV (2011) Determinants of inapparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet Thailand. PLoS Negl Trop Dis 5:e975

    Article  Google Scholar 

  • García C, García L, Espinosa-Carreón L, Ley C (2011) Abundancia y distribución de Aedes aegypti (Diptera: Culicidae) y dispersión del dengue en Guasave Sinaloa México. Rev Biol Trop 59:1609–1619

    Google Scholar 

  • Gharbi M, Quenel P, Gustave J, Cassadou S, Ruche GL, Girdary L, Marrama L (2011) Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect Dis 11:166

    Article  Google Scholar 

  • Gomes AF, Nobre AA, Cruz OG (2012) Temporal analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Brazil, 2001–2009. Cad Saude Publica 28:2189–2197

    Article  Google Scholar 

  • Grange L, Simon-Loriere E, Sakuntabhai A, Gresh L, Paul R, Harris E (2014) Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front Immunol 5:280. doi:10.3389/fimmu.2014.00280

    Google Scholar 

  • Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496

    CAS  Google Scholar 

  • Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103

    Article  CAS  Google Scholar 

  • Gubler DJ (2012) The economic burden of dengue. Am J Trop Med Hyg 86:743–744

    Article  Google Scholar 

  • Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez E et al (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:S7–S16

    Article  CAS  Google Scholar 

  • Halstead SB (2007) Dengue. Lancet 370:1644–1652

    Article  Google Scholar 

  • Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Hayes JM, García-Rivera E, Flores-Reyna R, Suárez-Rangel G, Rodríguez-Mata T, Coto-Portillo R, Baltrons-Orellana R, Mendoza-Rodriguez E, DE Garay BF, Jubis-Estrada J et al (2003) Risk factors for infection during a severe dengue outbreak in El Salvador in 2000. Am J Trop Med Hyg 69:629–633

    Google Scholar 

  • Hii YL, Zhu H, Ng N, Ng LC, Rocklöv J (2012) Forecast of dengue incidence using temperature and rainfall. PLoS Negl Trop Dis 6:e1908

    Article  Google Scholar 

  • Hsieh Y-H, Chen C (2009) Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Trop Med Int Health 14:628–638

    Article  Google Scholar 

  • Jeefoo P, Tripathi NK, Souris M (2010) Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao Province, Thailand. Int J Environ Res Public Health 8:51–74

    Article  Google Scholar 

  • Johansson MA, Cummings DAT, Glass GE (2009) Multi-year variability and dengue—El Niño Southern Oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 6:e1000168. doi:10.1371/journal.pmed.1000168

    Article  Google Scholar 

  • Kramer M (2005). R2 statistics for mixed models. In: Proceedings of the conference on applied statistics in agriculture, pp. 148–160

  • Limkittikul K, Brett J, L’Azou M (2014) Epidemiological trends of dengue disease in Thailand (2000–2011): a systematic literature review. PLoS Negl Trop Dis 8:e3241

    Article  Google Scholar 

  • Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CA, Sá Carvalho M, Barcellos C (2011) Spatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput Geosci 37:371–381

    Article  Google Scholar 

  • Lowe R, Bailey TC, Stephenson DB, Jupp TE, Graham RJ, Barcellos C, Carvalho MS (2013a) The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil. Stat Med 32:864–883

    Article  Google Scholar 

  • Lowe R, Chirombo J, Tompkins AM (2013b) Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J 12:416

    Article  Google Scholar 

  • Lowe R, Barcellos C, Coelho CA, Bailey TC, Coelho GE, Graham R, Jupp T, Ramalho WM, Carvalho MS, Stephenson DB et al (2014) Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect Dis 14:619–626

    Article  Google Scholar 

  • Magee L (1990) R 2 measures based on Wald and likelihood ratio joint significance tests. Am Stat 44:250–253

    Google Scholar 

  • Martins TG, Simpson D, Lindgren F, Rue, avard H (2013) Bayesian computing with INLA: new features. Comput Stat Data Anal 67:68–83

    Article  Google Scholar 

  • Muttitanon W, Kongthong P, Kongkanon C, Yoksan S, Nitatpattana N, Gonzales J, Barbazan P (2004) Spatial and temporal dynamics of Dengue Hemorrhagic Fever epidemics, Nakhon Pathom province, Thailand, 1997–2001. Dengue Bull 28:35–43

    Google Scholar 

  • Nagao Y, Koelle K (2008) Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci 105:2238–2243

    Article  CAS  Google Scholar 

  • Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S (2014) Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 14:167

    Article  Google Scholar 

  • Padmanabha H, Soto E, Mosquera M, Lord C, Lounibos L (2010) Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. EcoHealth 7:78–90

    Article  CAS  Google Scholar 

  • Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, Yoon I-K, Gibbons RV, Burke DS, Cummings DA (2013) Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface 10:20130414

    Article  Google Scholar 

  • Reiter P (2014) Surveillance and control of urban dengue vectors. In: Gubler DJ, Ooi EE, Vasudevan S, Farrar J (eds) Dengue and dengue hemorrhagic fever, 2nd edn. CAB International, Wallingford, pp. 481–518

  • Ritchie SA, Devine GJ (2013) Confusion, knock-down and kill of Aedes aegypti using metofluthrin in domestic settings: a powerful tool to prevent dengue transmission? Parasit. Vectors 6:1–9

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol 71:319–392

    Article  Google Scholar 

  • Sabin AB (1952) Research on dengue during World War II. Am J Trop Med Hyg 1:30–50

    CAS  Google Scholar 

  • Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD (2000) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37:89–101

    Article  CAS  Google Scholar 

  • Singhrattna N, Rajagopalan B, Kumar KK, Clark M (2005) Interannual and interdecadal variability of Thailand summer monsoon season. J Clim 18:1697–1708

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64:583–639

    Article  Google Scholar 

  • Stewart-Ibarra AM, Lowe R (2013) Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am J Trop Med Hyg 88:971–981

    Article  Google Scholar 

  • Thai KT, Anders KL (2011) The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med 236:944–954

    Article  CAS  Google Scholar 

  • Tipayamongkholgul M, Fang CT, Klinchan S, Liu CM, King CC (2009) Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996–2005. BMC Public Health 9:1–15

    Article  Google Scholar 

  • Tjaden NB, Thomas SM, Fischer D, Beierkuhnlein C (2013) Extrinsic incubation period of dengue: knowledge, backlog, and applications of temperature dependence. PLoS Negl Trop Dis 7:e2207

    Article  Google Scholar 

  • Townson H, Nathan M, Zaim M, Guillet P, Manga L, Bos R, Kindhauser M (2005) Exploiting the potential of vector control for disease prevention. Bull World Health Organ 83:942–947

    CAS  Google Scholar 

  • Watts D, Burke D, Harrison B, Whitmire R, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36:143–152

    CAS  Google Scholar 

  • Wichmann O, Yoon I-K, Vong S, Limkittikul K, Gibbons RV, Mammen MP, Ly S, Buchy P, Sirivichayakul C, Buathong R et al (2011) Dengue in Thailand and Cambodia: an assessment of the degree of underrecognized disease burden based on reported cases. PLoS Negl Trop Dis 5:e996

    Article  Google Scholar 

  • Wu P-C, Guo H-R, Lung S-C, Lin C-Y, Su H-J (2007) Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 103:50–57

    Article  Google Scholar 

  • Yu H-L, Yang S-J, Yen H-J, Christakos G (2011) A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Environ Res Risk Assess 25:485–494

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the DENFREE project (Grant Agreement No. 282378) funded by the European Commission’s Seventh Framework Research Programme. RL is grateful to the STEPHI project, Daniel Simpson and Harvard Rue for valuable training and technical support in using the R-INLA package.

Conflict of interest

We declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Lowe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowe, R., Cazelles, B., Paul, R. et al. Quantifying the added value of climate information in a spatio-temporal dengue model. Stoch Environ Res Risk Assess 30, 2067–2078 (2016). https://doi.org/10.1007/s00477-015-1053-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1053-1

Keywords

Navigation