Skip to main content
Log in

Predicting biomass and grain protein content using Bayesian methods

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper deals with the problem of predicting biomass and grain protein content using improved particle filtering (IPF) based on minimizing the Kullback–Leibler divergence. The performances of IPF are compared with those of the conventional particle filtering (PF) in two comparative studies. In the first one, we apply IPF and PF at a simple dynamic crop model with the aim to predict a single state variable, namely the winter wheat biomass, and to estimate several model parameters. In the second study, the proposed IPF and the PF are applied to a complex crop model (AZODYN) to predict a winter-wheat quality criterion, namely the grain protein content. The results of both comparative studies reveal that the IPF method provides a better estimation accuracy than the PF method. The benefit of the IPF method lies in its ability to provide accuracy related advantages over the PF method since, unlike the PF which depends on the choice of the sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of this sampling distribution, which also utilizes the observed data. The performance of the proposed method is evaluated in terms of estimation accuracy, root mean square error, mean absolute error and execution times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews B, Yi T, Iglesias P (2006) Optimal noise filtering in the chemotactic response of Escherichia coli. PLoS Comput Biol 2(11):e154

    Article  Google Scholar 

  • Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  • Basso B, Ritchie J (2005) Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in michigan. Agric Ecosyst Environ 108(4):329–341

    Article  Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy M, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C et al (1998) Stics: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory, and parameterization applied to wheat and corn. Agronomie 18(5–6):311–346

    Article  Google Scholar 

  • Diepen C, Wolf J, Keulen H, Rappoldt C (1989) Wofost: a simulation model of crop production. Soil Use Manag 5(1):16–24

    Article  Google Scholar 

  • Elsheikh AH, Pain C, Fang F, Gomes J, Navon I (2013) Parameter estimation of subsurface flow models using iterative regularized ensemble kalman filter. Stoch Environ Res Risk Assess 27(4):877–897

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367

    Article  Google Scholar 

  • Frutos E, Galindo MP, Leiva V (2014) An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch Environ Res Risk Assess 28(1):1629–1641

    Article  Google Scholar 

  • Gustafsson F, Gunnarsson F, Bergman N, Forssell U, Jansson J, Karlsson R, Nordlund P (2002) Particle filters for positioning, navigation, and tracking. IEEE Trans Signal Process 50(2):425–437

    Article  Google Scholar 

  • Hansen S, Jensen H, Nielsen N, Svendsen H (1990) NPo-research, A10: DAISY: soil plant atmosphere system model. Miljøstyrelsen, Copenhagen

    Google Scholar 

  • Jeuffroy M-H, Recous S (1999) Azodyn: a simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization. Eur J Agron 10(2):129–144

    Article  Google Scholar 

  • Kandepu R, Foss B, Imsland L (2008) Applying the unscented Kalman filter for nonlinear state estimation. J Process Control 18(7):753–768

    Article  CAS  Google Scholar 

  • Kotecha J, Djuric P (2003) Gaussian particle filtering. IEEE Trans Signal Process 51(10):2592–2601

    Article  Google Scholar 

  • Lee JH, Ricker NL (1994) Extended Kalman filter based nonlinear model predictive control. Ind Eng Chem Res 33(6):1530–1541

    Article  CAS  Google Scholar 

  • Leisenring M, Moradkhani H (2011) Snow water equivalent prediction using bayesian data assimilation methods. Stoch Environ Res Risk Assess 25(2):253–270

    Article  Google Scholar 

  • Liu X, Cardiff MA, Kitanidis PK (2010) Parameter estimation in nonlinear environmental problems. Stoch Environ Res Risk Assess 24(7):1003–1022

    Article  Google Scholar 

  • Liu J, Chen R (1998) Sequential Monte Carlo methods for dynamic systems. J Am Stat Assoc 93(443):1032–1044

    Article  Google Scholar 

  • Makowski D, Jeuffroy M, Guérif M (2004) Bayesian methods for updating crop-model predictions, applications for predicting biomass and grain protein content. Frontis 3:57–68

    Google Scholar 

  • Mansouri M, Dumont B, Destain M-F (2014) Modeling and prediction of time-varying environmental data using advanced bayesian methods. Explor Innov Success Appl Soft Comput 25(7):112–137

    Article  Google Scholar 

  • Mansouri M, Dumont B, Leemans V, Destain M-F (2014) Bayesian methods for predicting LAI and soil water content. Precis Agric 15(2):184–201

    Article  Google Scholar 

  • Matthies L, Kanade T, Szeliski R (1989) Kalman filter-based algorithms for estimating depth from image sequences. Int J Comput Vis 3(3):209–238

    Article  Google Scholar 

  • Meynard J-M, Cerf M, Guichard L, Jeuffroy M-H, Makowski D et al (2002) Which decision support tools for the environmental management of nitrogen? Agronomie-Sciences des Productions Vegetales et de l’Environnement 22(7–8):817–830

    Google Scholar 

  • Sarkka S (2007) On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans Autom Control 52(9):1631–1641

    Article  Google Scholar 

  • Shu Q, Kemblowski MW, McKee M (2005) An application of ensemble Kalman filter in integral-balance subsurface modeling. Stoch Environ Res Risk Assess 19(5):361–374

    Article  Google Scholar 

  • Varlet-Grancher C, Bonhomme R, Chartier M, Artis P (1982) Efficience de la conversion de l’énergie solaire par un couvert végétal. Acta Oecol. Oecol Plant 3(1):3–26

    Google Scholar 

  • Williams J, Jones C, Kiniry J, Spanel D (1989) The epic crop growth model. Trans Am Soc Agric Eng 32(2):497–511

    Article  Google Scholar 

  • Yan W, Hunt L, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the gge biplot. Crop Sci 40(3):597–605

    Article  Google Scholar 

  • Yang N, Tian W, Jin Z, Zhang C (2005) Particle filter for sensor fusion in a land vehicle navigation system. Meas Sci Technol 16(3):677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by Fonds de la Recherche Scientifique (FNRS) Grant. The statements made herein are solely the responsibility of the authors. The authors would like to thank the editor and the reviewers for the valuable comments and suggestions that enhanced the presentation and clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Mansouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Destain, MF. Predicting biomass and grain protein content using Bayesian methods. Stoch Environ Res Risk Assess 29, 1167–1177 (2015). https://doi.org/10.1007/s00477-015-1038-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1038-0

Keywords

Navigation