Skip to main content
Log in

Copula-based mixed models for bivariate rainfall data: an empirical study in regression perspective

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 02 October 2008

Abstract

A comprehensive parametric approach to study the probability distribution of rainfall data at scales of hydrologic interest (e.g. from few minutes up to daily) requires the use of mixed distributions with a discrete part accounting for the occurrence of rain and a continuous one for the rainfall amount. In particular, when a bivariate vector (X, Y) is considered (e.g. simultaneous observations from two rainfall stations or from two instruments such as radar and rain gauge), it is necessary to resort to a bivariate mixed model. A quite flexible mixed distribution can be defined by using a 2-copula and four marginals, obtaining a bivariate copula-based mixed model. Such a distribution is able to correctly describe the intermittent nature of rainfall and the dependence structure of the variables. Furthermore, without loss of generality and with gain of parsimony this model can be simplified by some transformations of the marginals. The main goals of this work are: (1) to empirically explore the behaviour of the parameters of marginal transformations as a function of time scale and inter-gauge distance, by analysing data from a network of rain gauges; (2) to compare the properties of the regression curves associated to the copula-based mixed model with those derived from the model simplified by transformations of the marginals. The results from the investigation of transformations’ parameters are in agreement with the expected theoretical dependence on inter-gauge distance, and show dependence on time scale. The analysis on the regression curves points out that: (1) a copula-based mixed model involves regression curves quite close to some non-parametric models; (2) the performance of the parametric regression decreases in the same cases in which non-parametric regression shows some instability; (3) the copula-based mixed model and its simplified version show similar behaviour in term of regression for mid-low values of rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Capéraà P, Fougères A-L, Genest C (1997) A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3):567–577

    Article  Google Scholar 

  • Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, Chichester

    Google Scholar 

  • Ciach GJ, Krajewski WF, Villarini G (2007) Product-error-driven uncertainty model for probabilistic precipitation estimation with NEXRAD data. J Hydrometeorol 8(6):1325–1347

    Article  Google Scholar 

  • Cleveland WS (1993) Visualizing data. Hobart Press, Summit

    Google Scholar 

  • Coles S, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2(4):339–365

    Article  Google Scholar 

  • Downton F (1970) Bivariate exponential distributions in reliability theory. J Roy Stat Soc Ser B 32:408–417

    Google Scholar 

  • Fang H-B, Fang K-T, Kotz S (2002) The meta-elliptical distributions with given marginals. J Multivariate Anal 82(1):1–16

    Article  CAS  Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37:80–100

    Article  Google Scholar 

  • Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rémillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré—Probabilités et Statistiques. doi: 10.1214/07-AIHP148

  • Genest C, Favre A-C, Béliveau J, Jacques C (2007) Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43:W09401. doi:10.1029/2006WR005275

  • Genest C, Rémillard B, Beaudoin D (2008) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ. doi:10.1016/j.insmatheco.2007.10.005

  • Ha E, Yoo C (2007) Use of mixed bivariate distributions for deriving inter-station correlation coefficients of rain rate. Hydrol Process 21(22):3078–3086

    Article  Google Scholar 

  • Habib E, Krajewski WF, Ciach GJ (2001) Estimation of rainfall interstation correlation. J Hydrometeorol 2:621–629

    Article  Google Scholar 

  • Herr HD, Krzysztofowicz R (2005) Generic probability distribution of rainfall in space: the bivariate model. J Hydrol 306:234–263

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge

    Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, New York

    Google Scholar 

  • Kayano K, Shimizu K (1994) Optimal thresholds for a mixture of lognormal distributions as the continuous part of the mixed distribution. J Appl Meteorol 33:1543–1550

    Article  Google Scholar 

  • Kedem B, Chiu LS, Karni Z (1990) An analysis of the threshold method for measuring area-average rainfall. J Appl Meteorol 29:3–20

    Article  Google Scholar 

  • Kottegota NT, Rosso R (1997) Probability, statistics, and reliability for civil and environmental engineers. McGraw-Hill, New York

    Google Scholar 

  • Kotz S, Balakrishnan N, Johnson NL (2000) Continuous multivariate distributions, 2nd edn. Wiley, New York

    Google Scholar 

  • Kuhn G, Khan S, Ganguly AR, Branstetter ML (2007) Geospatial–temporal dependence among weekly precipitation extremes with applications to observations and climate model simulations in South America. Adv Water Resour 30:2401–2423

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    Google Scholar 

  • Poulin A, Huard D, Favre A-C, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12(4):394–403

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Springer, Dordrecht

    Google Scholar 

  • Schmidt R (2005) Tail dependence. In: Cizek P, Härdle W, Weron R (eds) Statistical tools in finance and insurance. Springer, New York

    Google Scholar 

  • Schmidt R, Stadtmüller U (2006) Non-parametric estimation of tail dependence. Scand J Stat 33:307–335

    Article  Google Scholar 

  • Serinaldi F (2008) Analysis of inter-gauge dependence by Kendall’s τK, upper tail dependence coefficient, and 2-copulas with application to rainfall fields. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0176-4

  • Shimizu K (1993) A bivariate mixed lognormal distribution with an analysis of rainfall data. J Appl Meteorol 32:161–171

    Article  Google Scholar 

  • Sirangelo B, Versace P, De Luca DL (2007) Rainfall nowcasting by at site stochastic model P.R.A.I.S.E. Hydrol Earth Syst Sci 11:1341–1351

    Article  Google Scholar 

  • Sklar A (1959) Fonction de répartition à n dimensions et leurs marges. Publications de Institut de Statistique Université de Paris 8:229–231

    Google Scholar 

  • Villarini G, Serinaldi F, Krajewski WF (2008) Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches. Adv Water Resour (submitted)

  • Yoo C, Ha E (2007) Effect of zero measurements on the spatial correlation structure of rainfall. Stoch Environ Res Risk Assess 21:287–297

    Article  Google Scholar 

  • Yoo C, Jung K-S, Kim T-W (2005) Rainfall frequency analysis using a mixed gamma distribution: evaluation of the global warming effect on daily rainfall. Hydrol Processes 19(19):3851–3861

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank G. Villarini for fruitful comments and discussions, and two anonymous referees for their thorough and constructive reviews. The CNR-IRPI and the Umbria Regional Hydrometeorological Service are acknowledged for kindly providing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Serinaldi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00477-008-0281-z

Appendix

Appendix

The copulas belonging to Gumbel family (also known as Gumbel–Hougaard family) have expression:

$$ C_{G} \left( {u,v;\alpha } \right) = \exp \left[ { - \left( {\left( { - \ln u} \right)^{\alpha } + \left( { - \ln v} \right)^{\alpha } } \right)^{{{1 \mathord{\left/ {\vphantom {1 \alpha }} \right. \kern-\nulldelimiterspace} \alpha }}} } \right], $$
(16)

were α ≥ 1 is a dependence parameter. For α = 1, Gumbel copula approaches the Product copula Π (u, v) = uv describing independence of random variables U and V. For α → ∞, Gumbel copula approaches the Fréchet–Hoeffding upper bound M(u, v) = min{u, v}, denoting perfect positive association. Kendall’s τ K and α are related as follows:

$$ \alpha = \left( {1 - \tau _{{\text{K}}} } \right)^{{ - 1}} . $$
(17)

The lower and upper tail dependence coefficients for copulas of this family are, respectively, \( \lambda _{{\text{L}}} = 0 \) and \( \lambda _{{\text{U}}} = 2 - 2^{{{1 \mathord{\left/ {\vphantom {1 \alpha }} \right. \kern-\nulldelimiterspace} \alpha }}} . \) From the latter and Eq. (17), it follows that:

$$ \lambda _{{\text{U}}} = 2 - 2^{{1 - \tau _{{\text{K}}} }} . $$
(18)

Gumbel family belongs to Archimedean and Extreme Value classes of copulas (for more details, consult Nelsen (2006) and Salvadori et al. (2007), among others).

Student copula belongs to meta-elliptical class introduced by Fang et al. (2002) (see also Genest et al. (2007) for hydrological applications). It is given by:

$$ C_{{t_{\upsilon } }} \left( {u,v;\alpha ,\upsilon } \right) = \int\limits_{{ - \infty }}^{{t_{\upsilon }^{{ - 1}} \left( u \right)}} {\int\limits_{{ - \infty }}^{{t_{\upsilon }^{{ - 1}} \left( v \right)}} {\frac{{\Upgamma \left( {\frac{{\upsilon + 2}}{2}} \right)}}{{\Upgamma \left( {\frac{\upsilon }{2}} \right)\upsilon \pi \sqrt {1 - \alpha ^{2} } }}} } \times \left( {1 + \frac{{x^{2} - 2\alpha xy + y^{2} }}{\upsilon }} \right)^{{ - \frac{{\upsilon + 2}}{2}}} dxdy, $$
(19)

where α ∈ [–1, 1] is a dependence parameter and \( t_{\upsilon }^{{ - 1}} \) is the quantile function of Student distribution with υ degrees of freedom. The cases α = 0, 1, −1 correspond, respectively, to \( C_{{t_{\upsilon } }} = \Uppi ,C_{{t_{\upsilon } }} = M, \) and \( C_{{t_{\upsilon } }} = W, \) where W(u,v) = max{v−1,0} is Fréchet–Hoeffding lower bound, which describes perfect negative association. Parameter α corresponds to Pearson’s correlation coefficient and is related to Kendall’s τ K by:

$$ \alpha = \sin \left( {\frac{\pi }{2}\tau _{{\text{K}}} } \right). $$
(20)

Lower and upper tail dependence coefficients are equal and given by:

$$ \lambda _{{\text{L}}} = \lambda _{{\text{U}}} = 2t_{{\upsilon + 1}} \left( { - \sqrt {\frac{{\left( {\upsilon + 1} \right)\left( {1 - \alpha } \right)}}{{1 + \alpha }}} } \right). $$
(21)

From Eqs. (20) and (21), it follows the relation between τ K and λ U:

$$ \lambda _{\rm{U}} = 2t_{{\upsilon + 1}} \left( { - \sqrt {\frac{{\left( {\upsilon + 1} \right)\left( {1 - \sin \left( {\frac{{\tau _{\rm{K}} \pi }}{2}} \right)} \right)}}{{1 + \sin \left( {\frac{{\tau _{\rm{K}} \pi }}{2}} \right)}}} } \right). $$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serinaldi, F. Copula-based mixed models for bivariate rainfall data: an empirical study in regression perspective. Stoch Environ Res Risk Assess 23, 677–693 (2009). https://doi.org/10.1007/s00477-008-0249-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-008-0249-z

Keywords

Navigation