Skip to main content
Log in

De novo transcriptome sequencing and identification of genes related to salt and PEG stress in Tetraena mongolica Maxim

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The first transcriptome analyses of Tetraena mongolica provided 224,618 Unigenes and identified the genes that were differentially expressed under salt and drought conditions, giving some insights into the unique adaptive capacity of this relic plant.

Abstract

Tetraena mongolica Maxim, the only member of the Tetraena genus in the Zygophyllaceae, is endemic to the northwest of China. As one of the relic shrubs of the Paleo-Mediterranean flora, T. mongolica plays a key role in preserving the local ecological environment. To investigate its good adaptability in desert, we studied the transcriptome of T. mongolica under NaCl and PEG6000 stresses. Three libraries were constructed from a mixture of seedlings and mature plants of T. mongolica, and the de novo transcriptome was sequenced using an Illumina HiSeq 4000. Approximately 218.15 million clean reads were assembled de novo into 383,612 transcripts, and 116,027 All-Unigenes were identified. By aligning All-Unigene sequences against the NR database, we found that most of the All-Unigenes had very low matches with the sequences from other plants. A total of 21,112 SSRs and 6 types of SNP variants were identified. The RNA-Seq data revealed 60 transcription factor (TF) families with 3163 genes in total. Six libraries were constructed from the separate control or stressed seedlings, and the transcriptome was sequenced using a BGISEQ-500 platform. There are 1105 and 1383 differentially expressed genes (DEGs) with 42 and 54 TFs under NaCl and PEG6000 treatment, respectively. The genes that were putatively involved in salt and osmotic stresses were searched and analyzed. Quantitative reverse transcription PCR (qRT-PCR) showed that DEG expression profiles were consistent with those from RNA-seq (RNA sequencing). Overall, this study provides new insights into the molecular mechanisms that control salt and drought stress responses in T. mongolica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of supporting data

The transcriptome sequencing raw data were deposited in the National Center for Biotechnology Information with the Accession No. PRJNA490096 and PRJNA490438.

Abbreviations

BLAST:

Basic local alignment search tool

DEGs:

Differentially expressed genes

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

KOG:

Eukaryotic Orthologous Groups

Nr/Nt:

Non-redundant database and nucleotide collection

PEG:

Polyethylene glycol

QC:

Quality control

qRT-PCR:

Quantitative reverse transcription PCR

RNA-seq:

RNA sequencing

TFs:

Transcription factors

References

  • Abdallah SB, Aung B, Amyot L, Lalin I, Lachaal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38(3):1–13

    Google Scholar 

  • Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98(1–3):529–539

    CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123(3):1047–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee A, Khurana JP, Jain M (2016) Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic Arabidopsis suggest their role in abiotic stress response. Front Plan Sci 7:627

    Google Scholar 

  • Chen G, Komatsuda T, Ma J, Li C, Yamaji N, Nevo E (2011) A functional cutin matrix is required for plant protection against water loss. Plant Signal Behav 6:1297–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang D, Zhang C, Xia X, Yin W, Tian Q (2015) A putative PP2C-encoding gene negatively regulates ABA signaling in Populus euphratica. PLoS One 10(10):e0139466

    PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:1–12

    Google Scholar 

  • Dang Z, Zheng L, Wang J, Gao Z, Wu S, Qi Z, Wang Y (2013) Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14(1):29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13(1):229

    PubMed  PubMed Central  Google Scholar 

  • Doddamani D, Katta MA, Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinform 15(1):212

    Google Scholar 

  • Fu LK, Jin JM (1992) China plant red data book—rare and endangered plants. Science Press, Beijing

    Google Scholar 

  • Gao F, Li H, Xiao Z, Wei C, Feng J, Zhou Y (2018) De novo transcriptome analysis of Ammopiptanthus nanus and its comparative analysis with A. mongolicus. Trees 32(1):287–300

    CAS  Google Scholar 

  • Ge X, Hwang C, Liu Z, Huang C, Huang W, Hung K, Wang W, Chiang T (2011) Conservation genetics and phylogeography of endangered and endemic shrub Tetraena mongolica (Zygophyllaceae) in Inner Mongolia, China. BMC Genetics 12(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma FD, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 29:644–652

    CAS  Google Scholar 

  • Guo Y, Jiang Q, Hu Z, Sun X, Fan S, Zhang H (2018) Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J 6(2):181–190

    Google Scholar 

  • Haynsen MS, Vatanparast M, Mahadwar G, Zhu D, Moger-Reischer RZ, Doyle JJ, Crandall KA, Egan AN (2018) De novo transcriptome assembly of Pueraria montana var. lobata and Neustanthus phaseoloides for the development of eSSR and SNP markers: narrowing the US origin(s) of the invasive kudzu. BMC Genomics 19(1):439

    PubMed  PubMed Central  Google Scholar 

  • He Y, Li W, Lv J, Jia Y, Wang M, Xia G (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522

    CAS  PubMed  Google Scholar 

  • Heer K, Ullrich KK, Liepelt S, Rensing SA, Zhou J, Ziegenhagen B, Opgenoorth L (2016) Detection of SNPs based on transcriptome sequencing in Norway spruce (Picea abies (L.) Karst). Conserv Genet Resour 8(2):105–107

    Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458

    Google Scholar 

  • Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:1182–1187

    Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Toshiaki T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    CAS  PubMed  Google Scholar 

  • Kawaguchi R, Girke T, Bray EA, Bailey-Serres J (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38(5):823–839

    CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):25–34

    Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    CAS  Google Scholar 

  • Li M, Zhao M, Wu H, Wu W, Xu Y (2013) Cloning, characterization and functional analysis of two type 1 diacylglycerol acyltransferases (DGAT1 s) from Tetraena mongolica. J Integr Plant Biol 55(6):490–503

    CAS  PubMed  Google Scholar 

  • Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C, Hu Z (2016) Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics 17(1):200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Xing C, Yao Z, Huang XS (2017) PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotech J 15:1186–1203

    CAS  Google Scholar 

  • Li N, Zheng YQ, Ding HM, Li HP, Peng HZ (2018) Development and validation of SSR markers based on transcriptome sequencing of Casuarina equisetifolia. Tree 32(1):41–49

    CAS  Google Scholar 

  • Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136(1):2806–2817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GH, Zhou SQ, Thang L, Ren L (1993) Study on the biological characteristics and the endangering factors of the Tetraena mongolica. J Inner Mong For Coll 2:33–39

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Long Y, Zhang J, Tian X, Wu S, Zhang Q, Zhang J, Zhang J, Dang Z, Pei X (2014) De novo assembly of the desert tree Haloxylon ammodendron (C.A. Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics 15(1):1111

    PubMed  PubMed Central  Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305

    CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068

    CAS  PubMed  Google Scholar 

  • Ma Q, Yue L, Zhang J, Wu G, Bao A, Wang S (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32(1):4–13

    CAS  PubMed  Google Scholar 

  • Ma X, Wang P, Zhou S, Sun Y, Liu N, Li X, Hou Y (2015) De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii. BMC Genomics 16:753

    PubMed  PubMed Central  Google Scholar 

  • Ma Q, Hu J, Zhou X, Yuan H, Kumar T, Luan S, Wang S (2017) ZxAKT1 is essential for K + uptake and K +/Na + homeostasis in the succulent xerophyte Zygophyllum xanthoxylum. Plant J 90(1):48–60

    CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    CAS  PubMed  Google Scholar 

  • Mudado MA, Ortega JM (2006) A picture of gene sampling/expression in model organisms using ESTs and KOG proteins. Genet Mol Res 5(1):242–253

    CAS  Google Scholar 

  • Naser V, Shani E (2016) Auxin response under osmotic stress. Plant Mol Biol 91:661–672

    CAS  PubMed  Google Scholar 

  • Pan Y, Niu M, Liang J, Lin E, Tong Z, Zhang J (2017) Identification of heat-responsive miRNAs to reveal the miRNA mediated regulatory network of heat stress response in Betula luminifera. Trees 31(5):1635–1652

    CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    CAS  PubMed  Google Scholar 

  • Rossia L, Borghi M, Francini A, Lin X, Xie D, Sebastiani L (2016) Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J Plant Phys 204:8–15

    Google Scholar 

  • Sakuraba Y, Kim YS, Han SH, Lee BD, Paek NC (2015) The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell 27:1771–1787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    CAS  PubMed  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Wang Y, Zhou H, Zhou J (2012) Comparative analysis of water related parameters and photosynthetic characteristics in the endangered plant Tetraena mongolica Maxim. and the closely related Zygophyllum xanthoxylon (Bunge) Maxim. Acta Ecol Sinica 32(4):1163–1173

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    CAS  PubMed  Google Scholar 

  • Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MH, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335(6064):85–88

    CAS  PubMed  Google Scholar 

  • Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot 99:257–266

    CAS  PubMed  Google Scholar 

  • Tang S, Ding L, Zhai H, Qin N, Duan H (2012) Four new triterpenes from the endemic relict shrub Tetraena mongolica. J Asian Nat Prod Res 14(1):838–843

    CAS  PubMed  Google Scholar 

  • Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress1 promoter. Plant Cell 16:2481–2498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–research0034.11

    Google Scholar 

  • Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649

    CAS  Google Scholar 

  • Wang G (2005) The western Ordos plateau as a biodiversity center of relic shrubs in arid areas of China. Biodivers Conserv 14(13):3187–3200

    Google Scholar 

  • Wang Y, Ma H, Zheng R (2000) Studies on the reproductive characteristics of Tetraena mongolica Maxim. Acta Botanica Boreal Occident Sinica 20(4):661–665

    Google Scholar 

  • Wang G, Lin Q, Xu Y (2007) Tetraena mongolica Maxim can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems. Phytochemistry 68(15):2112–2117

    CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Du H, Li T, Wuyun T (2017) De novo transcriptome sequencing and identification of genes related to salt stress in Eucommia ulmoides Oliver. Trees 32(1):1–13

    Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    CAS  PubMed  Google Scholar 

  • Wu H, Zhang Z, Wang J, Oh DH, Dassanayake M, Liu B, Huang Q, Sun H, Xia R, Wu Y, Wang Y, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen S, Bohnert HJ, Zhu J, Wang X, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109(30):12219–12224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Raven PH, Hong D (2013) Flora of China. Science Press, Beijing

    Google Scholar 

  • Xu Q, Jiang C, Liu S, Guo Q (2003) Study on pollination ecology of endangered plant Tetraena mongolica population. For Res 16(4):391–397

    Google Scholar 

  • Xu XJ, Feng JC, Lü SY, Lohrey GT, An HL, Zhou YJ, Jenks MA (2014) Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability. Physiol Plantarum 151:446–458

    CAS  Google Scholar 

  • Xu XJ, Xiao L, Feng JH, Chen NM, Chen Y, Song B, Xue K, Shi S, Zhou YJ, Jenks MA (2016) Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture. Physiol Plantarum 158:318–330

    CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yang C (2000) Comparative analysis of genetic diversity in the endangered shrub Tetraena mongolica and its related congener Zygophyllum xanthoxylon. Acta Phytoecologica Sinica 24(4):425–429

    Google Scholar 

  • Zhang J, Li X, He Z, Zhao X, Wang Q, Zhou B, Yu D, Huang X, Tang D, Guo X, Liu X (2013) Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana. Mol Biol Rep 40(3):2633–2644

    CAS  PubMed  Google Scholar 

  • Zhu J (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4(5):401–406

    CAS  PubMed  Google Scholar 

  • Zhu J (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Li H, Zhao L, Man L, Liu Q (2016) Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center. Sci Rep 6:26268–26276

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31470392, 31570407), the First Class University and Discipline Construction Project of Minzu University of China (Yldxxk201819).

Author information

Authors and Affiliations

Authors

Contributions

XX designed the experiments. NC performed the experiments, data analysis, and drafted the manuscript. JF helped conceive the study. BS and JH helped analyze data. ST helped draft the manuscript. YZ and SS helped in design and coordination. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaojing Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

T mongolica is endemic to the western part of Inner Mongolia and Ningxia, Gansu province and also subjected as nationally endangered in China. Before collecting the seeds, an oral permission was obtained from the local management of forestry after applying with introduction letters from College of Life and Environmental Sciences, Minzu University of China.

Additional information

Communicated by Grima-Pettenati.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Feng, J., Song, B. et al. De novo transcriptome sequencing and identification of genes related to salt and PEG stress in Tetraena mongolica Maxim. Trees 33, 1639–1656 (2019). https://doi.org/10.1007/s00468-019-01886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01886-7

Keywords

Navigation