Skip to main content

Advertisement

Log in

Growth variability and contrasting climatic responses of two Quercus macrolepis stands from Southern Albania

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Contrasted response of Quercus macrolepis growth to climate conditions during summer months indicated increased climate-related control of tree growth at high elevation site modulated by topographic characteristics and tree age.

Abstract

High climatic variability and increased drought conditions lead to reduced growth and increased mortality of several tree species in Mediterranean regions, and other parts of the world. We have evaluated the impact of climate variability (temperature and precipitation) and drought stress (standardized precipitation index, SPI) on vegetation activity (normalized difference vegetation index, NDVI) and tree radial growth (earlywood width, EW; latewood width, LW; and tree-ring width, TRW) of two Quercus macrolepis stands in Southern Albania with different topographic site conditions. During spring, increased vegetation activity (May NDVI) was coupled with enhanced radial growth at both locations (lower and upper site). At the lower site, vegetation activity and radial growth were controlled mostly by winter–spring precipitation and drought stress accumulated for a mid-term period (6–12 months). Contrastingly, at the upper site, summer precipitation, temperature and the drought index at short time scale (<5 months) were the main drivers of radial growth. The highly significant response of radial growth to temperature and precipitation during the summer months at the upper site contrasts with the response to winter–spring climate at the lower site, and it indicates a seasonal shift in climate responses of this species with elevation. Therefore, it is necessary to stimulate adequate management strategies to increase Q. macrolepis resilience to further possible climate impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdalla S, Pizzi A, Bahabri F, Ganash A (2015) Analysis of Valonia oak (Quercus aegylops) acorn tannin and wood adhesives application. BioResources 10:7165–7177. doi:10.15376/biores.10.4.7165-7177

    Article  CAS  Google Scholar 

  • Adams HR, Barnard HR, Loomis AK (2014) Topography alters tree growth–climate relationships in a semi-arid forested catchment. Ecosphere 5:1–16. doi:10.1890/ES14-00296.1

    Article  Google Scholar 

  • Alla AQ, Camarero JJ (2012) Contrasting responses of radial growth and wood anatomy to climate in a Mediterranean ring-porous oak: implications for its future persistence or why the variance matters more than the mean. Eur J For Res 131:1537–1550. doi:10.1007/s10342-012-0621-x

    Article  Google Scholar 

  • Anders I, Stagl J, Auer I, Pavlik D (2014) Climate change in Central and Eastern Europe. In: Rannow S, Neubert M (eds) Managing protected areas in Central and Eastern Europe under climate change. Springer, The Netherlands, pp 17–30

    Chapter  Google Scholar 

  • Andreu L, Gutiérrez E, Macias M et al (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Change Biol 13:804–815. doi:10.1111/j.1365-2486.2007.01322.x

    Google Scholar 

  • Bartholomeus RP, Witte JPM, Runhaar J (2012) Drought stress and vegetation characteristics on sites with different slopes and orientations. Ecohydrology 5:808–818. doi:10.1002/eco.271

    Article  Google Scholar 

  • Black BA, Colbert JJ, Pederson N (2008) Relationships between radial growth rates and lifespan within North American tree species. Écoscience 15:349–357

    Article  Google Scholar 

  • Borelli S, Varela MC (2001) Mediterranean oaks network: report of the first meeting, 12–14 October 2000, Antalya, Turkey. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Bozzano M, Turok J (2003) Mediterranean Oaks Network: Report of the Second Meeting, 2–4 May 2002-Gozo, Malta. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Briffa KR, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic, Dordrecht, pp 137–152

    Google Scholar 

  • Bruci E (2007) Climate change projection for South Eastern Europe. HMI, Tirana Polytechnic University, Tirana

    Google Scholar 

  • Brunner I, Herzog C, Dawes MA et al (2015) How tree roots respond to drought. Front Plant Sci. doi:10.3389/fpls.2015.00547

    PubMed  PubMed Central  Google Scholar 

  • Bunn AG, Hughes MK, Kirdyanov AV et al (2013) Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environ Res Lett 8:035034. doi:10.1088/1748-9326/8/3/035034

    Article  Google Scholar 

  • Campos P, Huntsinger L, Oviedo JL et al (eds) (2013) Mediterranean oak woodland working landscapes—Dehesas of Spain and Ranchlands of California. Springer, The Netherlands

    Google Scholar 

  • Čater M, Levanič T (2015) Physiological and growth response of Quercus robur in Slovenia. Dendrobiology. doi:10.12657/denbio.074.001

    Google Scholar 

  • Chang TJ, Kleopa XA (1991) A proposed method for drought monitoring. J Am Water Resour Assoc 27:275–281. doi:10.1111/j.1752-1688.1991.tb03132.x

    Article  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. doi:10.1038/nature11688

    CAS  PubMed  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. University of Arizona, Tucson

    Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. doi:10.1177/095968369700700314

    Article  Google Scholar 

  • Correia RA, Haskell WC, Gill JA et al (2015) Topography and aridity influence oak woodland bird assemblages in southern Europe. For Ecol Manag 354:97–103. doi:10.1016/j.foreco.2015.06.032

    Article  Google Scholar 

  • Delpierre N, Vitasse Y, Chuine I et al (2016) Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann For Sci 73:5–25. doi:10.1007/s13595-015-0477-6

    Article  Google Scholar 

  • Dorman M, Svoray T, Perevolotsky A, Sarris D (2013) Forest performance during two consecutive drought periods: diverging long-term trends and short-term responses along a climatic gradient. For Ecol Manag 310:1–9. doi:10.1016/j.foreco.2013.08.009

    Article  Google Scholar 

  • Dufour-Dror JM, Ertas A (2002) Cupule and acorn basic morphological differences between Quercus ithaburensis Decne. subsp. ithaburensis and Quercus ithaburensis subsp. macrolepis Kotschy Hedge Yalt. Acta Bot Malacit 27:237–242

    Google Scholar 

  • Dufour-Dror JM, Ertas A (2004) Bioclimatic perspectives in the distribution of Quercus ithaburensis Decne. subspecies in Turkey and in the Levant. J Biogeogr 31:461–474. doi:10.1046/j.0305-0270.2003.01036.x

    Article  Google Scholar 

  • Falcão L, Araújo MEM (2011) Tannins characterisation in new and historic vegetable tanned leathers fibres by spot tests. J Cult Herit 12:149–156. doi:10.1016/j.culher.2010.10.005

    Article  Google Scholar 

  • FAO (1998) World reference base for soil resources. ISRIC and ISSS, Rome

    Google Scholar 

  • FAO (2013) State of Mediterranean forests. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/docrep/017/i3226e/i3226e.pdf. Accessed 10 Oct 2016

  • Fekedulegn D, Hicks RR Jr, Colbert JJ (2003) Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. For Ecol Manag 177:409–425. doi:10.1016/S0378-1127(02)00446-2

    Article  Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570. doi:10.1111/j.1469-8137.2006.01945.x

    Article  PubMed  Google Scholar 

  • Fotelli MN, Radoglou KM, Constantinidou HIA (2000) Water stress responses of seedlings of four Mediterranean oak species. Tree Physiol 20:1065–1075. doi:10.1093/treephys/20.16.1065

    Article  CAS  PubMed  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Gea-Izquierdo G, Cañellas I (2014) Local climate forces instability in long-term productivity of a Mediterranean oak along climatic gradients. Ecosystems 17:228–241. doi:10.1007/s10021-013-9719-3

    Article  Google Scholar 

  • Gea-Izquierdo G, Fernández-de-Uña L, Cañellas I (2013) Growth projections reveal local vulnerability of Mediterranean oaks with rising temperatures. For Ecol Manag 305:282–293. doi:10.1016/j.foreco.2013.05.058

    Article  Google Scholar 

  • Gutiérrez E, Campelo F, Camarero JJ et al (2011) Climate controls act at different scales on the seasonal pattern of Quercus ilex L. stem radial increments in NE Spain. Trees 25:637–646. doi:10.1007/s00468-011-0540-3

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Heim RR (2002) A review of twentieth-century drought indices used in the United States. Am Meteorol Soc 83:1149–1165

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570. doi:10.1146/annurev.pp.24.060173.002511

    Article  CAS  Google Scholar 

  • Instituti i Hidrometeorologjisë (1975) Klima e Shqipërisë. Tiranë, Albania

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Team Core Writing, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Kaplan D, Gutman M (1999) Phenology of Quercus ithaburensis with emphasis on the effect of fire. For Ecol Manag 115:61–70. doi:10.1016/S0378-1127(98)00436-8

    Article  Google Scholar 

  • Kaufmann RK, D’Arrigo RD, Paletta LF et al (2008) Identifying climatic controls on ring width: the timing of correlations between tree rings and NDVI. Earth Interact 12:1–14. doi:10.1175/2008EI263.1

    Google Scholar 

  • Klein T, Di Matteo G, Rotenberg E et al (2013) Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiol 33:26–36. doi:10.1093/treephys/tps116

    Article  PubMed  Google Scholar 

  • Kongjika E, Zeka Z, Caushi E et al (2001) Use of biotechnological methods for the Albanian genetic resources. Options Méditerranéennes 47:171–182

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 2:270–334. doi:10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

  • Littell RC, Milliken GA, Stroup WW et al (2006) SAS for mixed models. SAS, Cary

    Google Scholar 

  • Macias M, Andreu L, Bosch O et al (2006) Increasing aridity is enhancing silver fir (Abies Alba Mill.) water stress in its South-Western distribution limit. Clim Change 79:289–313. doi:10.1007/s10584-006-9071-0

    Article  Google Scholar 

  • Maselli F, Cherubini P, Chiesi M et al (2014) Start of the dry season as a main determinant of inter-annual Mediterranean forest production variations. Agric For Meteorol 194:197–206. doi:10.1016/j.agrformet.2014.04.006

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi:10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  • McKee TBN, Doesken J, Kleist J (1993) The relationship of drought frequency and duration to time scales. Eight Conference on Applied Climatology. American Meteorological Society, Anaheim, pp 179–184

    Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Mérian P, Bontemps JD, Bergès L, Lebourgeois F (2011) Spatial variation and temporal instability in climate-growth relationships of sessile oak (Quercus petraea [Matt.] Liebl.) under temperate conditions. Plant Ecol 212:1855. doi:10.1007/s11258-011-9959-2

    Article  Google Scholar 

  • Mitrakos K (1980) A theory for Mediterranean plant life. Oecologia Plant 1:245–252

    Google Scholar 

  • Montserrat-Martí G, Camarero JJ, Palacio S et al (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees 23:787–799. doi:10.1007/s00468-009-0320-5

    Article  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manag 260:1623–1639. doi:10.1016/j.foreco.2010.07.054

    Article  Google Scholar 

  • Olea L, San Miguel-Ayanz A (2006) The Spanish dehesa: a traditional Mediterranean silvopastoral system linking production and nature conservation. Grassl Sci Eur 11:3–13

    Google Scholar 

  • Paniza Cabrera A (2015) The landscape of the dehesa in the Sierra Morena of Jaén (Spain)—the transition from traditional to new land uses. Landsc Online. doi:10.3097/LO.201543

    Google Scholar 

  • Pantera A, Papanastasis VP (2012) Competitive effects of herbaceous species on water potential and growth of Quercus ithaburensis ssp. macrolepis seedlings. Glob Nest J 14:525–531

    Google Scholar 

  • Pantera A, Papadopoulos A, Fotiadis G, Papanastasis VP (2009) Distribution and phytogeographical analysis of Quercus ithaburensis ssp. macrolepis in Greece. Ecol Mediterr 34:73–82

    Google Scholar 

  • Papanastasis VP (2002) Valonia oak forests as rangeland resources. In: Veltsistas T, Pantera A, Papadopoulos AM et al (eds) Valonia oak forests: the past, the present, and the future. Giahoudis, Thessaloniki, pp 49–54

    Google Scholar 

  • Papanastasis VP, Mantzanas K, Dini-Papanastasi O, Ispikoudis I (2009) Traditional agroforestry systems and their evolution in Greece. In: Rigueiro-Rodróguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Springer, The Netherlands, pp 89–109

    Google Scholar 

  • Pasho E, Alla AQ (2015) Climate impacts on radial growth and vegetation activity of two co-existing Mediterranean pine species. Can J For Res 45:1748–1756. doi:10.1139/cjfr-2015-0146

    Article  Google Scholar 

  • Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric For Meteorol 151:1800–1811. doi:10.1016/j.agrformet.2011.07.018

    Article  Google Scholar 

  • Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2012) Factors driving growth responses to drought in Mediterranean forests. Eur J For Res 131:1797–1807. doi:10.1007/s10342-012-0633-6

    Article  Google Scholar 

  • Piao S, Fang J, Zhou L et al (2006) Variations in satellite-derived phenology in China’s temperate vegetation. Glob Change Biol 12:672–685. doi:10.1111/j.1365-2486.2006.01123.x

    Article  Google Scholar 

  • Pignatti S (1982) Flora d’Italia. Edagricole, Bologna

    Google Scholar 

  • Pinto CA, Henriques MO, Figueiredo JP et al (2011) Phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. For Ecol Manag 262:500–508. doi:10.1016/j.foreco.2011.04.018

    Article  Google Scholar 

  • Piovesan G, Biondi F, di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apenines, Italy. Glob Chang Biol 14:1–17

    Google Scholar 

  • Piraino S, Camiz S, Di Filippo A et al (2013) A dendrochronological analysis of Pinus pinea L. on the Italian mid-Tyrrhenian coast. Geochronometria 40:77–89. doi:10.2478/s13386-012-0019-z

    Article  Google Scholar 

  • Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann For Sci 62:209–218. doi:10.1051/forest:2005012

    Article  Google Scholar 

  • Schenk HJ (1996) Modeling the effects of temperature on growth and persistence of tree species: a critical review of tree population models. Ecol Model 92:1–32. doi:10.1016/0304-3800(95)00212-X

    Article  Google Scholar 

  • Siam AMJ, Radoglou KM, Noitsakis B, Smiris P (2009) Differences in ecophysiological responses to summer drought between seedlings of three deciduous oak species. For Ecol Manag 258:35–42. doi:10.1016/j.foreco.2009.03.048

    Article  Google Scholar 

  • Srur AM, Villalba R, Baldi G (2011) Variations in Anarthrophyllum rigidum radial growth, NDVI and ecosystem productivity in the Patagonian shrubby steppes. Plant Ecol 212:1841. doi:10.1007/s11258-011-9955-6

    Article  Google Scholar 

  • Takahashi K, Takahashi H (2016) Effects of climatic conditions on tree-ring widths of three deciduous broad-leaved tree species at their northern distribution limit in Mont St. Hilaire, eastern Canada. J For Res 21:178–184. doi:10.1007/s10310-016-0530-9

    Article  Google Scholar 

  • Tárrega R, Calvo L, Taboada Á et al (2009) Abandonment and management in Spanish dehesa systems: effects on soil features and plant species richness and composition. For Ecol Manag 257:731–738. doi:10.1016/j.foreco.2008.10.004

    Article  Google Scholar 

  • Taschen E, Sauve M, Taudiere A et al (2015) Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities. Environ Microbiol 17:2747–2761. doi:10.1111/1462-2920.12741

    Article  PubMed  Google Scholar 

  • Tessier L, Nola P, Serre-Bachet F (1994) Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytol 126:355–367. doi:10.1111/j.1469-8137.1994.tb03955.x

    Article  Google Scholar 

  • Touchan R, Hughes MK (1999) Dendrochronology in Jordan. J Arid Environ 42:291–303. doi:10.1006/jare.1999.0507

    Article  Google Scholar 

  • Trouvé R, Bontemps JD, Collet C et al (2016) Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status. Trees. doi:10.1007/s00468-016-1479-1

    Google Scholar 

  • Uslu E, Bakış Y (2014) Morphometric analyses of the leaf variation within Quercus L. Sect. Cerris Loudon in Turkey. Dendrobiology 71:109–117. doi:10.12657/denbio.071.011

    Google Scholar 

  • Valbuena-Carabaña M, de Heredia UL, Fuentes-Utrilla P et al (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynol 162:492–506. doi:10.1016/j.revpalbo.2009.11.003

    Article  Google Scholar 

  • Vicente-Serrano SM (2006) Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula. Water Resour Manag 20:37–60. doi:10.1007/s11269-006-2974-8

    Article  Google Scholar 

  • Vicente-Serrano SM, Gouveia C, Camarero JJ et al (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci 110:52–57. doi:10.1073/pnas.1207068110

    Article  CAS  PubMed  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2008) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265. doi:10.1007/s00468-008-0273-0

    Article  Google Scholar 

  • Villaeys A (1990) L’Albanie forestière. Rev For Fr 5:531–541

    Article  Google Scholar 

  • Vitasse Y, Porté AJ, Kremer A et al (2009) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198. doi:10.1007/s00442-009-1363-4

    Article  PubMed  Google Scholar 

  • Vrahnakis MS, Fotiadis G, Pantera A et al (2014) Floristic diversity of valonia oak silvopastoral woodlands in Greece. Agrofor Syst 88:877–893. doi:10.1007/s10457-014-9733-2

    Article  Google Scholar 

  • Wang J, Rich PM, Price KP, Kettle WD (2004) Relations between NDVI and tree productivity in the central Great Plains. Int J Remote Sens 25:3127–3138. doi:10.1080/0143116032000160499

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289. doi:10.1111/j.1469-8137.2012.04180.x

    Article  CAS  PubMed  Google Scholar 

  • Zhou YZ, Jia GS (2016) Precipitation as a control of vegetation phenology for temperate steppes in China. Atmos Ocean Sci Lett 9:162–168. doi:10.1080/16742834.2016.1165594

    Article  Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi:10.1093/jxb/erj125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Gjergji Qose for his support in the field. The contribution of two anonymous reviewers and Communicating Editor for the improvement of the manuscript is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arben Q. Alla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Resco de Dios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alla, A.Q., Pasho, E. & Marku, V. Growth variability and contrasting climatic responses of two Quercus macrolepis stands from Southern Albania. Trees 31, 1491–1504 (2017). https://doi.org/10.1007/s00468-017-1564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1564-0

Keywords

Navigation