Skip to main content
Log in

Molecular cloning, characterization, and functional analysis of CcBBM gene from camphor tree (Cinnamomum camphora L.)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Cloning and functional analysis of CcBBM gene.

Abstract

Baby boom (BBM), as a transcription factor of AP2/ERF family, has great potence in promoting somatic embryogenesis. In this study, a BBM gene from somatic embryos of camphor tree (Cinnamomum camphora L.), named CcBBM, was cloned and characterized. A partial fragment of 560 bp of CcBBM was amplified by degenerate PCR based on the two conserved AP2 domains of other annotated BBMs. Full-length cDNA of CcBBM was obtained by a cloning strategy combing degenerate PCR and RACE technique. The open-reading frame of CcBBM is 2169 bp in length, which encodes 722 amino acids. A comparison of the deduced amino acid sequence of CcBBM with BBM from other species showed high similarities, ranging from 51 to 80 %. The mRNA levels of CcBBM in different tissues were detected by semi-quantitative reverse transcription PCR (RT-PCR). CcBBM was expressed in most tissues, with highest expression level in somatic embryos, followed by roots, young fruits and flowers. Ectopic expression of CcBBM gene in Arabidopsis exhibited a variety of deformed and variegated leaves and short roots. No spontaneous somatic embryogenesis was observed in 35S::CcBBM transgenic plants. These results will help us understand the role of CcBBM in somatic embryogenesis in camphor tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Babu KN, Sajina A, Minoo D, John CZ, Mini PM, Tushar KV, Rema J, Ravindran PN (2003) Micropropagation of camphor tree (Cinnamomum camphora). Plant Cell Tiss Org 74(2):179–183. doi:10.1023/A:1023988110064

    Article  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, pp 28–36

    Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8):1737–1749. doi:10.1005/Tpc.001941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J Cell Mol Biol 16(6):735–743

    Article  CAS  Google Scholar 

  • Deng W, Luo KM, Li ZG, Yang YW (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177(1):43–48. doi:10.1016/j.plantsci.2009.03.009

    Article  CAS  Google Scholar 

  • El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbe H, Han SY, Baum B, Laberge S, Miki B (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74(4–5):313–326. doi:10.1007/s11103-010-9674-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449(7165):1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493. doi:10.1093/jxb/ern305

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser (Oxf) 41:95–98

    CAS  Google Scholar 

  • Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30(6):1107–1115. doi:10.1007/s00299-011-1018-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewelt A, Prinsen E, Thomas M, Van Onckelen H, Meins F Jr (2000) Ectopic expression of maize knotted1 results in the cytokinin-autotrophic growth of cultured tobacco tissues. Planta 210(6):884–889

    Article  CAS  PubMed  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9):1211–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274(5289):982–985

    Article  CAS  PubMed  Google Scholar 

  • Land Protection (2001) NRM facts pest series. Department of Natural Resources and Mines, State of Queensland, Australia. http://www.nrm.qld.gov.au. Accessed 9 Jan 2003

  • Li ZN, Liu GF, Zhang JQ, Zhang JW, Bao MZ (2008) Extraction of high-quality tissue-specific RNA from London plane trees (Platanus acerifolia), permitting the construction of a female inflorescence cDNA library. Funct Plant Biol 35(2):159–165. doi:10.1071/Fp07212

    Article  CAS  Google Scholar 

  • Li KP, Sun XM, Han H, Zhang SG (2014) Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting. Gene 551(2):111–118. doi:10.1016/j.gene.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Kriseleit D, Ganal MW (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep 17:843–847

    Article  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2):173–182. doi:10.1105/tpc.7.2.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94(13):7076–7081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri C, Alburquerque N, Burgos L (2005) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tiss Org 80(3):271–276

    Article  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379(6):633–646

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi XP, Dai XG, Liu GF, Bao MZ (2009) Enhancement of somatic embryogenesis in camphor tree (Cinnamomum camphora L.): osmotic stress and other factors affecting somatic embryo formation on hormone-free medium. Trees Struct Funct 23(5):1033–1042. doi:10.1007/s00468-009-0345-9

    Article  Google Scholar 

  • Shi XP, Dai XG, Liu GF, Zhang JW, Ning GG, Bao MZ (2010) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cell Dev Pl 46(2):117–125. doi:10.1007/s11627-009-9272-0

    Article  CAS  Google Scholar 

  • Silva AT, Barduche D, do Livramento KG, Paiva LV (2015) A putative BABY BOOM-like gene (CaBBM) is expressed in embryogenic calli and embryogenic cell suspension culture of Coffea arabica L. Vitro Cell Dev Pl 51(1):93–101

    Article  CAS  Google Scholar 

  • Srinivasan C, Liu ZR, Heidmann I, Supena EDJ, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JBM, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225(2):341–351. doi:10.1007/s00425-006-0358-1

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HF, Kou YP, Gao B, Soliman TMA, Xu KD, Ma N, Cao X, Zhao LJ (2014) Identification and functional analysis of BABY BOOM genes from Rosa canina. Biol Plant 58(3):427–435. doi:10.1007/s10535-014-0420-y

    Article  CAS  Google Scholar 

  • Zhang LW, Li YP, Yao Y, Liang Y, Du L (2015) Cloning and expression analysis of EF1a gene fragment of elongation factor from Cinnamomum camphora. J Central South Univ For Technol 35(5):122–128

    CAS  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J Cell Mol Biol 30(3):349–359

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is funded by the National Natural Science Foundation of China (31100508), and the Ministry of Education of China (IRT13065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueping Shi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by J. Carlson.

Qinhong Liu and Cuijie Zhang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, C., Cheng, Y. et al. Molecular cloning, characterization, and functional analysis of CcBBM gene from camphor tree (Cinnamomum camphora L.). Trees 30, 1033–1043 (2016). https://doi.org/10.1007/s00468-015-1339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1339-4

Keywords

Navigation